~Programm irhg - U»ser‘Supporkt :

“Applications

Issue Number 43 March / April 1990 $3.00

Standardize Your Floppy Disk Drives
A New History Shell for Z-System
Heath’s HDOS, Then and Now
The Z-System Corner
Graphics Programming With C
Lazy Evaluation
S-100 There’s Still Life in the Old Bus
Advanced CP/M
The NS32000

The Computer Corner

The Computer Journal

Editor/Publisher
Ant Carlson

Art Director
Donna Carlson

Circulation
Donna Carison

Contributing Editors
Bill Kibler
Bridger Mitchell
Clem Pepper
Richard Rodman
Jay Sage
Dave Wenstein

The Computer Journal is pub-
lished six times a year by Technology
Resources, 190 Sullivan Crossroad,
Coulmbia Falls, MT 53912

(406) 2579119

Entire contents copyright © 1989

by Technology Resources.

Subscription rates—$16 one year
(6 issues), or $28 two years (12 is-
sues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur-
face) for one year in other countries.
All funds must be in U.S. dollars on a
U.S. bank.

Send subscription, renewals, ad-
dress changes, or advertising in-
quires to: The Computer Journal, 190
Sullivan Crossroad, Columbia Falls,
MT 59912, phone (406) 257-9119.

The COMPUTER
JOURNAL

Issue Number 43 March / April 1990
Editorial S eersssssssssreessessssseserananassans 2
Standardize Your Floppy Disk Drives 4

Using Dysan’s Diagnostic to check your floppy
drives. By Eugene L. Langberg.

LSH S . tessssessssssssessserrsansssssenennannas 11
A new history shell for Z-System. By Rob Friefeld.

Letwin’s Prior Progenycccccciiimmericssccnnennninnens 14
Heath's HDOS, then and now.
By Kirk L. Thompson.

The Z-System Cornercevirvriiisnccccsmmecmecceeeeees 17
Software Update Service, and customizing
NZCOM. By Jay Sage.

Graphics Programming With Cccccciiveveerneeeee. 19
Writing graphics routines for the IBM PC, and the
Turbo C graphics library. By Clem Pepper.

(07 AV SAVE1[UE-1 (o] | . 26
How to save time by ending the evaluation of

logical expressions as soon as the result is

known. By Marla Bartel.

S-100 ..cocvrrrieisnrcsnnesenisnnisnnissneressnessssnasssnens cirensenes 28

There’s still life in the old bus. Installing a new disk
controller and video board. By Michael Broschat.

Advanced CP/Mcueeerncrmeernearnennenans SR 3 |

Passing parameters when space is at a premium
and complex error recovery must be managed.
By Bridger Mitchell.

Real Computingcccecerecimmriccnene. SRR < |
The NS 32000. By Richard Rodman.

The Computer Corner.........cccceevircnecriccnscsnssscccsseness 40
By Bill Kibler.

Editor’s Page

The Challenge of the Future

The computer industry is continuing its
fast paced change with more powerful
software and hardware announced daily.
No one can accurately predict what will be
available next year, and there is a lot of
discussion about whether companies
should buy now or if they should wait till
the more powerful systems are available.
While a lot of attention is given to the fu-
ture of computer systems, very little is said
about the future of the people.

It is time to think about where people
will fit in with the future computer sys-
tems. Will there be enough jobs for pro-
grammers and hardware designers? And if
so, will they be in what we normally con-
sider the general computer industry, or
will they be in industrial applications? If
someone entering college asked for your
advice on selecting a curriculum to pre-

" pare them for the job market five years

from now, would you recommend courses
on hardware, software, or business appli-
cations of computers?

I feel that there will be a decreasing
demand for programmers and hardware
designers in the high volume general com-
puter field starting by 1995. I base this on

" the following assumptions.

The new systems are too large and
complicated for an individual to be effec-
tive in programming or hardware design.
It takes a large company to provide suffi-
cient resources.

The business users aren’t interested in
computers, they are only interested in
what it can do for their business. The buy-
ers demand well polished software with
high quality manuals plus on-site support
and training classes. They also want mul-
tiple sources so that they can use competi-
tive bidding to force the prices down. They
are only comfortable in working with other
large companies who “know how to play

the game.”

Most of the products will come from
large organizations, and any large organi-
zation tries to manage for the maximum
short term profit. This means that they will
adopt CAE (Computer Aided Engineer-
ing), Application Generators, and any
other tools in order to eliminate the ex-
pense of hiring people. It does not matter
that the resulting designs are less efficient
than what could be done by knowledge-
able engineers, after all, hardware is
cheap, and they’ll just use larger faster sys-
tems.

Anything which can not be automated
will be moved out of the United States.
Most of the hardware manufacturing has
already been either automated or moved.
Software programming is currently being
sent off-shore (a lot of it to India), and
more will be sent in the near future. There
is some hardware design being done off-
shore and this trend will accelerate.

We will be left with upper management
groups who will decide what hardware or
software is needed, and then send it out
for either automatic generation and de-
sign, or overseas for design and produc-
tion--of course the people overseas also
recognize the potentials of automation, so
a lot will be sent overseas for automatic
generation and design.

As other countries become more profi-
cient they will also become effective in
over all market design strategies. Then
they will ship us their own finished prod-
ucts which they designed, and we’ll be left
out of the picture except to send them our
dollars. You say that it couldn’t happen?
Talk to someone in the auto or steel in-
dustry. Or figure out how many TVs or
VCRs are designed and made here. When
was the last quality camera designed or
made in the US?

The computer industry is now at the

point of change, and I believe that we are
entering the final phases of the individual
computer related entrepreneur. Most
hardware and software design will be auto-
mated or sent overseas, so there will be
very few customers for the type of prod-
ucts which could be profitably marketed
by an individual. There will be some niche
exceptions such as database programming,
but even these are being automated (Para-
dox 3.0 and FoxPRO) so that the user can
develop their own applications without ac-
tually programming. There will be many
openings for people who understand busi-
ness computer applications, but few open-
ings for programmers.

I would recommend that the student
study business, Lotus 1-2-3, and Novell
NetWare, rather than computer design or
programming in C or dBASE.

Where does this leave those of us who
enjoy programming or hardware develop-
ment? There are two viable possibilities. 1)
Earn your income in some other field, and
use computers as a hobby where you can
do what you enjoy. 2) Train yourself for
the few computer related employment op-
portunities which still exist, especially if
these are in an area which you enjoy.

One area which I find fascinating and
which still provides significant opportunity
is the design of embedded process control-
ler applications. Each application is so spe-
cific and so demanding that it still takes a
sharp human brain to devise a solution.
This is the one field which I would recom-
mend to someone who insisted that they
wanted to earn a living working on com-
puters (as contrasted with office functions
which work with computers).

I am expanding the electronics bench,
and will switch most of my work towards
hardware design and programming of con-
trollers, some of which will be merely for
fun. One of the fun projects, which still

The Computer Journal / #43

provides a good opportunity for learning,
is a model train layout with smart control-
lers on the train(s) and infrared communi-
cations between the train(s) and the base
station. I will have no loyalty as to what
type of computer I work with--they are
only an appliance. If I need PageMaker or
Schema II I'll use the 286 because that’s
- what they run on. I'll use what ever a cross
assembler runs on, but it might not be the
same system I use for writing the assem-
bler source code. It will be very rare that
my target system will be a traditional com-
puter system, although I may use an S-100
system as a master with dedicated proces-
' sors on the boards.

While I feel that there is only a very
limited future in working on (remember
working on is very different than working
with) traditional systems, you are entitled
to disagree. 1 welcome your comments,
rebuttals, and poison pen letters.

The Computer Publishing Market

The computer book publishing industry
is in trouble (see editorial in #40). They
published too many titles for the wrong
market, too many poorly written books,
and tried to distribute technical titles
through the mass markets. Now, they are
retrenching and making drastic reductions
in their list.

We have received a notice from How-
ard W. Sams which states in part,
“..shares your concerns about possible
overpublishing in the computer books seg-
ment of the industry. We strive to meet
retailers’ needs by maintaining a short,
high-performance list.” The enclosed Out
of Print Notice lists 192 titles which are
being dropped! The good news is that
Lancaster’s TT1 and CMOS Cookbooks
are still in print.

We are headed into a dearth of techni-
cal titles, because these titles are not suit-
able for distribution through the high vol-
ume mass market channels. It is very im-
portant that we encourage and support
the companies which still serve our needs.
We will have to utilize mail order re-
sources to obtain our books because they
will not be stocked at Dalton’s or Walden-
books. The time is ripe for someone to
start a well publicized mail order outlet for
technical books from various publishers. It
should be located in a rural low-overhead
area, and be strictly mailorder to avoid the
expenses associated with a retail store-
front. They could get started by buying a
few select remainders from Sams’ out of

The Computer Journal / #43

print list (remainders are purchased at a
small fraction of the original price).

I know of three companies currently
publishing useful technical titles. One is
Tab Books (Blue Ridge Summit, PA
17294-0850, (717) 794-2191). I have just
received their book “The Programmable
Logic Device Handbook” by Burton,
which covers a vital new topic. I also want
to see “Programmable Controllers: Hard-
ware, Software, and Applications” by Bat-
ten, and “Brushless DC Motors: Elec-
tronic Commutation and Controls” by
Sokira and Jaffe. They have dozens of
good titles, don’t fail to write for their
catalog.

A second company is M&T Books (501
Galveston Drive, Redwood City, CA
94063 1-800-533-4372 (in CA 1-800-356-
2002)). M&T also publishes Dr. Dobbs
Journal. One of their titles is “Graphics
Programming in C” by Stevens (see Pep-
per’s article in this issue). Another recent
title is “Building Local Area Networks
with Novel’s NetWare” by Corrigan and
Guy. Most of their books are available
with disk. Write for their catalog.

The third company is Addison-Wesley
(Route 128, Reading MA 01867, (617)
944-3700). They publish four books on

(Continued on’page 38)

e Plu*Perfect Systems

der CP/M-2.2 (875)

version)

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

o New Automatic, Dynamic, Universal Z-Systems
— Z3PLUS: Z-System for CP/M-Plus computers ($69.95)

— NZ-COM: Z-System for CP/M-2.2 computers ($69.95)
— ZCPR34 Source Code: if you need to customize ($49.95)

— Backgrounder II: switch between two or three running tasks un-

— ZDOS: state-of-the-art DOS with date stamping and much more
(875, $60 for ZRDOS owners)

— DosDisk: Use DOS-format disks in CP/M machines, supports
subdirectories, maintains date stamps ($30 — $45 depending on

e BDS C — Special Z-System Version ($90)
e SLR Systems (The Ultimate Assembly Language Tools)

— Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLR180, SLR180+), Intel (SLRMAC, SLRMAC+)
— Linkers: SLRNK, SLRNK+

~ TPA-Based: $49.95; Virtual-Memory: $195.00
o NightOwl Software MEX-Plus ($60)

Same-day shipping of most products with modem download and support
available. Order by phone, mail, or modem. Shipping and handling $4 per
order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469
Voice: 617-965-3552 (9:00am — 11:30pm)
Modem: 617-965-7259 (password = DDT)(MABOS on PC-Pursuit)

Standardize Your Floppy Disk Drives

by Eugene L. Langberg

Last fall I put together an IBM PC/XT Clone from case, power
supply, boards and floppy disk drives purchased at a Computer
Show and Flea Market and through mail order. The machine went

. together easily and worked on the first try with no apparent prob-

lems.

The machine proved able to run all sorts of IBM software with-
out exception both public domain and copyright material. The ex-
tensive testing with IBM software convinced me that the machine
is an excellent clone, truly compatible.

The time had come to get down to some serious work. I bought
a copy of Flight Simulator and tried it. The A drive made its usual
noise, its LED went on and off a few times then all was quiet. The
monitor’s screen was blank, there was no response to keyboard
input, the machine had blocked-up.

What could be wrong? It just had to be the software. A quick
call for help to a friend who has an IBM PC/XT allowed me to try
my Flight Simulator program on the real machine. It loaded and
ran. There was nothing wrong with the software. The problem was
in my clone, but where?

After going over connections etc. with great care, and again
trying lots of IBM software, including IBM’s diagnostics, none of
which failed, I became convinced that the problem was in my
floppy disk drives. They appeared to be unable to read the data
from the Flight Simulator diskette. I substituted a disk drive taken
out of a CP/M machine for the clone’s drive A. My assumption
proved to be correct. The substitute drive was able to read all of
the software the troublesome drives could read and Flight Simula-
tor as well. My clone was compatible, my floppy disk drives were
not.

What could be wrong with a pair of apparently new drives that
could read lots of different software diskettes, without error, but
were unable to read the data from one particular diskette? My
conclusion, the drives required realignment.

Floppy disk drive designs are, for the most part, highly reliable.
Computer operators use their drives day in and day out for years
without special care or problems. Software houses make thou-
sands of floppy disk copies of their software, scll and send these
copies to users all over the world without any doubt in mind that
the user will be able to read and use the material on the disks they
receive. This is remarkable and attests to the reliability of both
floppy disks and floppy disk drives. However, in order for the
disks and drives to achieve this high degree of compatibility for
information interchange, they both must adhere closely to univer-
sally accepted standards of recerding and adjustment.

There are two simple adjustments that you can make to your
floppy disk drives using your computer and simple tools if you
have the proper software. These adjustments are the disk speed
and track alignment. However, unless you are in the business of
repairing floppy disk drives and therefor have the tools, specifica-
tions, access to replacement parts and the know-how for making
mechanical repairs, it is best that you not attempt to make major
repairs to your drives.

There are a number of programs in the public domain which
enable you to check the speed of your disks by simply running the
programs and making note of the results shown on the video

screen. Many floppy disk drives have a small adjustable resistor on
their printed circuit board which is used to set the speed. One
adjusts this resistor with a small screw-driver and repeats the test
until you have set the drive to a speed as close t0 300 RPM as you
can. Some drives even have a stroboscopic pattern on their pulleys
to facilitate this adjustment without using special software.

Checking track alignment is another matter. Doing so requires
that one have available a diskette made specifically for this pur-
pose. There are two kinds of such diskettes available. One is ana-
log, the other is digital. To usc the analog diskette one must have a
dual trace oscilloscope with specifications such, that it in itself be-
comes quite expensive. Not at all cost effective if one wishes to
check a few drives once in a while. On the other hand the digital
diskette, costing no more than some inexpensive software, is a
worth while investment for occasional checking of drives.

Dysan makes a series of Digital Diagnostic Diskettes which can
test drives in a computer using no special test equipment. The
diskettes are available in single-sided single-density, single-sided
double-density, double-sided single-density and double-sided
double-density. I purchased the double-sided double-density disk-
ette, model number 508-400 for use with my IBM PC/XT clone.
The list price for this diskette is $40.00.

By use of the Dysan Digital Diagnostic diskette and appropri-
ate software, the following are some of the tests that can be made
on a floppy disk drive without removing it from the computer.

Head Radial Alignment

Head Positioner Linearity

Head Positioner Hysteresis
Diskette-Clamping Eccentricity
Head-to-Media Compliance
Index/Sector Photo-Detector timing
Head Positioner Skew

Diskette Rotational Speed

Head Azimuth Alignment

Head Load Actuator Timing

All of the above are tests of the mechanical adjustments of a
drive. Drives purchased from their manufacturer should be able to
pass these tests without question and hold the adjustments despite
long and hard use. However if, as were mine, your drives were
purchased from someone who deals in drives with an unknown
history, the above tests can give you information about their condi-
tion and adjustment. Iowever, the fact remains, if you are not in
the business of drive repair the only practical adjustments you can
make to your drives is the rotational spced and the track alignment
or Head Radial Alignment as Dysan refers to it.

The model 508-400 Digital Diagnostic Diskette has data re-
corded on tracks 0, 5, 16, 19, 30 and 39 in progressive offset.
Other tracks have data recorded on them differently. For Head
Radial Alignment testing the progressive offset tracks are used.
The tracks are written with all the track and sector ID ficlds on
track. However, the data fields are written radially displaced from
the track centerline. The data field of sector one is displaced 6
thousandths of an inch toward the spindle, that of sector two, 6
thousandths of an inch away from the spindle. The data fields of
each successive pairs of sectors are displaced an additional thou-

The Computer Journal / #43

sandth of an inch toward and away from the spindle.

The read/write heads of a 5% inch disk drive are 12
thousandths of an inch wide. A drive with perfect Head
Radial Alignment and excellent head sensitivity should
be able to read data from alternate sectors out to the
last sectors where data is recorded within the 12 thou-
sandths of an inch head path. This would be for all
sectors out to 11 and 12. The program we must have to
test Head Radial Alignment must permit us to read all
readable sectors on the selected tracks that have the
progressive offset.

However, there is a problem if the program is to run
under PC-DOS. The Dysan Diagnostic Diskettes are
formatted with 16 sectors per track, and 256 bytes per
sector for the double-density models. This is not the PC-
DOS format used by the IBM PC or compatible ma-
chines which use diskettes formatted 8 or 9 sectors per
track and 512 bytes per sector, therefor, special software
must be written to read and use the diagnostic diskettes.

There are two ways to solve this problem. One is to
write our own disk-base, a table maintained by the oper-
ating system in the BIOS of the PC, which contains the
disk parameters including the number of sectors per
track and the number of bytes per sector, and tempo-
rarily replace the standard disk-base in memory with
one whose disk parameters include 16 sectors per track
and 256 bytes per sector. Doing this will allow BIOS
INT 13H and its read function, AH = 2, to read the
Dysan Diagnostic Diskette. The second way to handle
this problem is to by-pass the BIOS and directly address
the Floppy Disk Controller chip.

The first program I wrote to do this job involved the
replacement of the disk-base table and use of BIOS
INT 13H. However, 1 did not like the way the program
operated. The program was designed to read all of the
sectors from the selected track. However, it would not
read through a CRC error. This made for a rather
coarse test. A reworked program that would read a sec-
tor, report an error if one had occurred and would then
read the next sector, was tried and found cumbersome
to use.

The program was completely rewritten to read the
data from the diskette by addressing the Floppy Disk
Controller chip directly. It is this program that has been
included with this article.

The program makes use of a function available in
the controller chip that is not available through the PC
BIOS. This function reads all of the data stored in all of
the sectors of the selected track ignoring any CRC er-
rors that may be encountered. In our application the
drive will attempt to read data from all the sectors of the
progressive offset tracks. If the data is so far offset that
it can not be read or is misread, the process will not halt
despite CRC errors but will continue on to the end of
the track. When the data that has been read is examined
one can see where the drive begins to drop bits and
where the drive can no longer read anything from the
offset sector.

The program is not complicated nor tricky but in
order to see how it works does require some under-
standing of how one addresses the very intelligent
Floppy Disk Controller (FDC) and Direct Memory Ac-
cess (DMA) chips and sends commands to them.

The program comes up with a message that explains
how to exit the program, how to terminate the display of
data and restart the program and how to toggle the
display so that it stops and starts to allow the examina-
tion of the data in particular sectors before they scroll

The Computer Journal / #43

;TITLE Floppy Disk Drive Head Radial Alignment Program

jAuthor: Eugene L. Langberg
;Date: June 21, 1987

;jRequirements for use:
; An IBM PC/XT with one or more Floppy Disk Drives
; A Dysan Digital Diagnostic Diskette, Model No. 508-400

;MACRO AREA

PUSHR MACRO
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH BP
PUSH DI
PUSH SI
ENDM

7 THESE MACROS REPRESENT THE SHOTGUN
;WAY OF SAVING REGISTERS SO AS NOT
;TO WORRY IF YOU HAVE SAVED THE CORRECT
;ONES OR NOT WHEN YOU MOVE ABOUT IN
;THE PROGRAM BY CALLS TO ROUTINES THAT
;DO LIMITED THINGS SUCH AS OUTPUT A
iCHARACTER.
;PUSHR SAVES A GROUP OF REGISTERS

POPR MACRO
POPSI
POP DI
POP BP
POP DX
POPCX
POP BX
POP AX
ENDM

;POPR RESTORES THE SAME REGISTERS

DATA SEGMENT
;MESSAGE AREA

SIGNON DB 13,10,10
DB ‘(CTRL C) TERMINATES THE PROGRAM, (CTRL A) TERMINATES THE',13,10
DB ' DISPLAY AND REPEATS THE PROGRAM AND (ESC) TOGGLES THE ‘,13,10
pB ¢ DISPLAY STOPPING AND THEN STARTING IT AS YOU WISH *,
DB 13,10,10,'$’

MSG_DRV DB/ ENTER THE SELECTED DRIVE (0 FOR A, 1 FOR B)
MSG_TRK DB ¢ ENTER TRACK NUMBER (0 - 39)
MSG_HD DB ¢ ENTER HEAD (0 -1)
ERR_MSG DB 13,10
DB ‘' DIGITS ONLY IN THE RANGE SPECIFIED, TRY AGAIN ‘,13,10,10,'$’
TRK_MSG DB ‘TRACK $'
HD_MSG DB ‘' HEAD $'
SEC_M$SG DB ‘' SECTOR §'

;DECLARED VATABLE AREA

DRIVE DB ?
TRACK pPB ?
HEAD DB ?
SECTOR pPB ?
DRIVE_HEAD DB ?
MOTOR_ON DB ?

MOTOR_OFF DB ?
DATA_BUFF DB 4096
DECIMAL_BUFF DB 3

DUP(9FH) ;AN ODD FILL CHARACTER
DUP(0) ;STORE FOR DECIMAL NUMBERS

SECTOR_SIZE DB O001H
LAST SECTOR DB O010H
GAP3_LENGTH DB 021H
DATA_LENGTH DB OFFH

;256 BYTE SECTORS

;16 SECTORS PER TRACK

;GAP-3 LENGTH FOR DYSAN READ

;USE OFFH SINCE SECTOR SIZE IS SPECIFIED

DATA ENDS

STACK SEGMENT STACK
DB 80H DUP (?)

STACK ENDS

;A STACK OF 128 BYTES

CODE SEGMENT
ASSUME CS:CODE,DS:DATA

MAIN PROC TFAR
MOV AX,DATA ;POINT DS TO THE
MOV DS, AX ;DATA SEGMENT

START: MOV AH, OH ;RESET THE DISK SYSTEM
INT 13H ;WITH BIOS INTERRUPT CALL
CALL CLRSCR ;CLEAR THE SCREEN
MOVDX,OFFSET SIGNON ;DISPLAY THE SIGN ON MESSAGE

CALL MSGOUT
CALL SETUP ; INPUT SELECTED DRIVE, HEAD AND TRACK
CALL CLRSCR ;CLEAR THE SCREEN AGAIN
CALL READ_TRACK sREAD THE DATA ON THE SELECTED TRACK
CALL SHOW ;DISPLAY WHAT THE DRIVE WAS ABLE TO READ
CALL DELAY ;HOLD THE DISPLAY FOR A WHILE
JMP START ;BEFORE RESTARTING THE PROGRAM
MAIN ENDP

; THE FLOPPY DISK CONTROLLER (FDC) OPERATES THROUGH 3 I/O PORTS
; O3F2H THE DIGITAL OUTPUT REGISTER

H 03F4H THE STATUS REGISTER

; O3FSH THE DATA REGISTER

i

;THE READ_ TRACK PROCEDURE DOES THE FOLLOWING:

;TURNS ON THE MOTOR OF THE SELECTED DRIVE

{WAITS FOR IT TO COME UP TO SPEED

sRECALIBRATES THE SELECTED DRIVE

;DOES A SEEK TO THE SELECTED TRACK

;WAITS FOR AN INTERRUPT THAT INDICATES THE SEEK 1S DONE
;INITIALIZES THE DMA TO MOVE DATA TO MEMORY

7SENDS READ INSTRUCTIONS TO THE FDC

$
$

away. The program then asks for input from the keyboard. The
drive to read from, the head or side of the disk to read and the
track to read. After this information is entered there is a short wait
while the motor of the selected drive comes on, the drive is recali-
brated (its head goes to track zero and the controller is reset), the
drive does a seek (the heads move to the selected track), the drive
reads the data from all the sectors on the selected side (head) into
a buffer in memory via DMA, turns the motor off and displays the
contents of the buffer on the video monitor in clearly marked
sectors. There is a delay after the sixteenth sector has been shown
and the program restarts.

The Floppy Disk Controller chip used in the IBM-PCis a NEC
765. The 8272A FDC chip is the same. The FDC is directly ad-
dressed through three I/O ports. They are:

03F2H The Digital Output Register
03F4H The Status Register
O3FSH The Data Register

The eight bits of the Digital Output Register have the following
meaning:
bits 1-0 select the drive, 00 = A, 01 = B, 10 = C, 11 =D
bit 2 when 0 the drive resets

bit 3 when 1 it enables the FDC interrupt and DMA access
bits 7-4 turn on motor, 0001= A, 0010= B, 0100= C, 1000= D

Turning a specific drive on or off is simply a matter of sending
the proper byte of information to the Digital Output Register. A
byte whose bits are 00011100B = 28., sent to the Digital OQutput
Register will turn on drive A, enable its interrupt and enable DMA
access to it, for drive B the byte is 00101101 or 45. To turn drive A
off and reset it the byte 00000000 or 0. is sent to the Digital Out-
put Register, for drive B the byte is 00000001 or 1.

The eight bits of the Status Register have the following mean-
ing:
bits 3-0 tell which drive is in seek mode, 0001 = A,

0010 = B, 0100 = C and 1000 = D.
bit 4 1 = a read or write is in progress

bit 5 1 = FDC is not in DMA mode
bit € 1 = FDC Data Register is ready to send data

0 = FDC Data Register is ready to receive data
bit 7 1 = FDC is ready to send or receive data

Data being sent to or being received from the drive is placed in
the Data Register a byte at a time. When the drive is in DMA
mode, data is transferred through this register into or from mem-
ory directly without CPU involvement. When the drive is not in
DMA mode the CPU must transfer data to or from the drive
through this register one byte at a time as well. The non DMA
mode is often used for sending control commands to peripheral
devices. In the accompanying program the DMA mode is used to
transfer data that has been read from the diskette into memory. It
is then transferred from memory to the screen of the video display.

The program’s short procedure OUT_FDC demonstrates how
data is sent to the FDC in the non DMA mode. We need only
read the Status Register repeatedly until bit seven is turned on to
know when a byte of data should be sent to the Data Register.
The same procedure is used to read data from the FDC, when not
using DMA mode, but the instruction OUT is replaced with the
instruction IN.

The control commands that are sent to the Digital Output
Register do not require reading the Status Register to see if the
ready bit is on. However, these commands are limited in number
and might be thought of as a first level of command. One certainly
cannot read or write to a drive whose motor has not been turned
on. Once a drive has been turned on, the intelligence of the FDC
chip will permit the execution of no fewer than fifteen commands.
These commands are sent to the FDC through the data register.

The procedure used to send commands to the FDC is simple.

An operation code is the first of a series of bytes sent to the FDC.
This alerts the FDC intelligence that a command is coming in.

;WAITS FOR AN INTERRUPT THAT INDICATES THE DATA READ IS IN MEMORY
; TURNS OFF THE MOTOR

H
;* MUCH OF THIS ROUTINE, WITH MODIFICATIONS, HAS BEEN TAKEN FROM
; ROBERT JOURDAIN'S BOOK ‘‘PROGRAMMER'S PROBLEM SOLVER FOR

; THE IBM PC, XT & AT'’', SECTION 5.4.1

READ_TRACK PROC NEAR
; TURN ON THE SELECTED MOTOR

STI ;BE SURE THE INTERRUPTS ARE ENABLED
MOVDX,03F2H ;FDC DIGITAL OUTPUT REGISTER PORT ADDRESS
MOV AL ,MOTOR_ON ;SET PROPER BITS FOR THE SELECTED MOTOR
OUT DX, AL ;SEND THE COMMAND TO THE FDC

;WAIT FOR MOTOR TO COME UP TO SPEED

MOV CX,3500 ;COUNT FOR AN EMPTY LOOP (PC OR XT)
MOTOR_DELAY: LOCP MOTOR_DELAY ;IDLE FOR 1/2 SECOND

;RECALIBRATE THE SELECTED DRIVE

RECAL: MOVAH,07H ;OP-CODE FOR DRIVE RECALIBRATION
CALL QUT_FDC ;SEND THE OP-CODE TO THE FDC
MOV AH,DRIVE ;DRIVE TC RECALIBRATE
CALL OUT_FDC ;SEND IT TO THE FDC
CALL WAIT_INTERRUPT ;WAIT FOR THE OPERATION TO COMPLETE

;DO A SEEK TO THE SELECTED TRACK

SEEK: MOVAH,OFH ;OP-CODE NUMBER FOR SEEK
CALL OUT_FDC ;SEND THE OP-CODE TO THE FDC
MOV AH,DRIVE_HEAD ;GET THE DRIVE AND HEAD BYTE
CALL OUT_FbC ;SEND IT TO THE FDC
MOV AH, TRACK ;GET THE TRACK NUMBER
CALL OUT_FDC ;SEND IT TC THE FDC
CALL WAIT_INTERRUPT ;WAIT FOR THE OPERATION TO COMPLETE

JWAIT FOR THE HEAD TO SETTLE
MOV CX, 1750 ;COUNT FOR EMPTY LOOP
WAIT_SETTLE: ; IDLE FOR 25 MILLISECONDS
LOOP WAIT_SETTLE

;INITIALIZE THE DMA CHIP

MOV AL, 46H ;OP-CODE TO READ DATA FROM THE FDC
OUT 0BH, AL JWRITE TO THE MODE REGISTER
QUT OCH, AL ;CLEAR FIRST/LAST FLIP-FLOP

;CALCULATE THE 20 BIT ADDRESS OF DATA_BUFF

MOV AX,OFFSET DATA BUFF ;GET BUFFER OFFSET IN DATA SEGMENT

MOV BX, DS ;PUT DS INTO BX

MOVCL, 4 ;GET READY TO ROTATE HIGH NIBBLE OF DS
ROL BX,CL ;ROTATE TO BOTTOM FOUR BITS OF BX

MOV DL, BL ;COPY BL TO DL

AND DL, OFH ;BLANK TOP NIBBLE OF DL

AND BL, OFOH ;BLANK BOTTOM NIBBLE OF BL

ADD AX,BX ;ADD BX INTO AX (DS INTO OFFSET)
JNCNO_CARRY ;IF NO CARRY, DL 1S A PAGE VALUE

INC DL ;BUT IF CARRY, FIRST INCREMENT DL

;NOW SEND ADDRESS AND BYTE COUNT INFORMATION TO THE DMA CHIP

NO_CARRY:
OUT 4 ,AL ;SEND LOW BYTE OF ADDRESS
MOV AL, AH ;SHIFT HIGH BYTE
OUT 4,AL ;SEND HIGH BYTE OF ADDRESS
MOV AL, DL ;FETCH PAGE VALUE
OUT 81H,AL ;SEND PAGE NUMBER
MOVAX,4096 ;BYTE COUNT OF FULL TRACK OF DATA
OUT5,AL ;SEND LOW BYTE OF DATA BYTE COUNT
MOVAL, AH JREADY HIGR BYTE
OUT 5, AL ;SEND HIGH BYTE OF DATA BYTE COUNT

;ENABLE CHANNEL 2 OF THE DMA CHIP

MOV AL, 2 ;GET SET TO ENABLE CHANNEL 2
OUT OAH, AL ;ALL DONE, DMA WAITS FOR DATA

;NOW SEND THE READ PARAMETERS TO THE FDC

MOV AH, 062K ;OP_CODE FOR FULL TRACK READ

CALL OUT_FDC ;SEND IT TO THE FDC

MOV AH,DRIVE_HEAD ; DRIVE AND HEAD BYTE, FROM SETUP

CALL OUT_FDC ;SEND IT TO THE FDC

MOV AR, TRACK ; TRACK NUMBER, FROM SETUP

CALL OUT_FDC ;SEND IT TO THE FDC

MOV AH, HEAD ;HEAD, FROM SETUP

CALL OUT_FDC $SEND IT TO THE FDC

MOVAH,1 ;START READING AT SECTOR ONE

CALL OUT_FDC ;SEND IT TO THE FDC

MOV AH,SECTOR_SIZE ;256 BYTE SECTORS FOR THE DIAGNOSTIC
DISK

CALL OUT_FDC FSEND IT TO THE FDC

MOV AH,LAST_ SECTOR ;READ 16 SECTORS FROM THE TRACK

CALL OUT_FDC JSEND IT TO THE FDC

MOV AH,GAP3_LENGTH ;GAP3 LENGTE IN BYTES

CALL OUT_FDC ;SEND IT TO THE FDC

MOV AH,DATA_ LENGTH | ;OFFH, READ ALL DATA IN THE SECTORS

CALL OUT_FDC ;SEND IT TO THE FDC

CALL WAIT_INTERRUPT ;WAIT FOR THE OPERATION TO COMPLETE

;TURN OFF THE MOTOR

The Computer Journal / #43

Then the requisite series of bytes is sent. Some commands require
as few as two bytes including the op-code. Others require as many
as eight bytes after the op-code.

The program turns on the motor of a selected drive and goes
into a delay loop to give the motor time to come up to speed. The
drive is then recalibrated. Recalibration is one of the simple two
byte commands. A byte containing the op-code 07H is sent fol-
lowed by a byte containing a number representing the drive to be
recalibrated. The FDC then goes into its execution phase and per-

-forms the commanded action. In this case the heads retract to

track zero of the drive and the controller’s track counter register is
zeroed. In effect the drive and FDC have been reset. After an
operation is completed the FDC returns an interrupt and drive
status information to the processor interface.

Our program waits for the interrupt to be returned before pro-
ceeding. A seek command is now sent to the FDC, that is move
the heads to the selected track. The op-code for a seek is OFH,
which is sent to the FDC followed by two additional bytes that
carry the selected drive, head and track information. The FDC
enters its execution phase, carries out the command and returns
an interrupt and status information. A time delay is introduced at
this point to allow the head to settle onto the spinning diskette.
Data can now be read from the diskette. However, since we wish
the data to be read from diskette to memory by DMA it is neces-
sary that the program initialize the DMA chip before reading data
from the diskette.

The IBM PC and compatibles use the 8237A programmable
DMA controller chip. The 8237A has four independent prioritized
transfer channels. Channel O has the highest priority, 0, and is used
for memory refresh. Channel 1 is unassigned. Its priority is 1.
Channel 2 is used for data transfer to and from the floppy disk
drives. It has a priority of 2. Channel 3 is used for data transfer to
and from the fixed disk. It has a priority of 3. The enclosed pro-
gram concerns itself only with Channel 2, that assigned to the
floppy disk drives.

Channel 2 of the DMA chip is directly addressed through six I/
O ports. They are:

4 Used for the starting address of the memory area to or from which
data will be transferred.

5 Used for the byte count of the data to be transferred.

OAH Mask Register

OBH Mode Register

OCH Clear First/Last flip-flop

81H Page Register

The bits of the Mode Register have the following meaning:

bits 0-1 Channel select, 00 = 0, 01 = 1, 10 = 2, 11 = 3
bits 2-3 Transfer: Verify = 00, Write = 01, Read = 10
bit 4 Autoinitialization, 0 = Disable, 1 = Enable
bit 5 Select Address, 0 = Increment, 1 = Decrement
bits 6-7 01 = Single mode select

The op-code is derived from the above bit meanings and is sent
to I/O port OBH to set the mode of DMA operation. In the en-
closed program the op-code used is 046H. Which means Select
Single Mode Transfer, Increment Addresses after each byte trans-
fer, Disable Autoinitialization, Write to Memory, and Select Chan-
nel 2 to use the floppy disk drives.

A write to I/O port OCH Clears the First/Last Flip/Flop. This
command must be executed before writing a new address or new
word count information to the DMA chip in order to initialize this
flip/flop to a known state so that subsequent accesses to this regis-
ter’s contents by the microprocessor will address its upper and
lower bytes in the correct sequence.

The purpose of I/O ports 4, 5 and 81H are self evident from
the above. However, the manner of their use is not straight for-
ward.

Since the IBM PC’s address bus is twenty bits wide, the starting
address of the memory area to which data read from the disk is to
be transferred must be a twenty bit value. To handle this with

The Computer Journal / #43

MOVDX,03F2H ;ADDRESS OF THE DIGITAL OUTPUT REGISTER
MOV AL,MOTOR_OFF ;LEAVE BIT 3 ON, TURN BIT 2 OFF

OUT DX, AL ;SEND THE COMMAND TO THE FDC

RET ;RETURN TO CALLING ROUTINE

READ_TRACK ENDP
WAIT_ INTERRUPT PROC NEAR

RESETS STATUS BYTE
;MONITORS INTERRUPT € STATUS IN BIOS STATUS BYTE:

;WAITS FOR INTERRUPT 6, AND

MOV AX,40H ;SEGMENT OF BIOS DATA AREA

MOVES,AX ;PLACE IT IN ES

MOV BX, 03EH ;OFFSET OF THE STATUS BYTE
WIl: MOVDL,ES:[BX] ;GET THBE BYTE

TEST DL,80H ;TEST BIT 7

JZ WIl ;KEEP LOOPING UNTIL SET

ANDDL,01111111B ;RESET BIT 7

MOV ES:(BX],DL;REPLACE THE STATUS BYTE

RET ;RETURN TO CALLING ROUTINE
WAIT_ INTERRUPT ENDP

OUT_FDC PROC NEAR ;SENDS THE BYTE IN AH TO THE FDC
MOVDX,03F4H ;FDC STATUS REGISTER PORT ADDRESS
KEEP_TRYING:
IR AL,DX ;FETCH STATUS REGISTER CONTENTS
TEST AL,80H ' ;IS BIT 7 ON?
Jz KEEP_TRYING ;IF NOT, KEEP LOOPING
INC DX ;READY, POINT TO FDC DATA REGISTER PORT ADDRESS
MOV AL, AH FVALUE WAS PASSED IN AH
OUTDX,AL ;SEND THE VALUE TO THE FDC DATA REGISTER
RET ;RETURN TO CALLING ROUTINE
OUT_FDC ENDP

; THE SHOW PROCEDURE DISPLAYS THE DATA THAT WAS READ INTO DATA_BUFF
;FROM THE SELECTED TRACK, ON THE VIDEO MONITOR

;THE DATA 1S PRESENTED AS 16 SECTORS OF 256 CHARACTERS EACH

;EACH SECTOR IS LABELED WITH ITS TRACK, HEAD AND SECTOR NUMBER
;THE DATA IN EACH SECTOR IS SHOWN AS 4 LINES 64 CHARACTERS EACH

SHOW PROC NEAR
MOV SI,OFFSET DATA_BUFF ;DATA_BUFF ADDRESS TO INDEX REGISTER
MOVBL,1 ;BL IS SECTOR COUNTER
MOV CX, 10H ;NUMBER OF SECTORS PER TRACK

SHOW1: PUSH cxX ;SAVE CX AS SECTOR COUNTER
MOV DX,OFFSET TRK_MSG ;SETUP TO OUTPUT TRK_MSG
CALL MSGOUT ;GO DO IT
MOVDL,TRACK ;OUTPUT TRACK NUMBER
CALL DECOUT # IN DECIMAL
CALL SPACE ;OUTPUT A SPACE
MOV DX,O0FFSET BD_MSG ;SETUP TO OUTPUT HD_MSG
CALL MSGOUT ;GO DO IT
MOV AL, HEAD ;OUTPUT HEAD NUMBER
ADDAL, 30H +IN ASCII
CALL OUTPUT ;GO DO IT
CALL SPACE ;OUTPUT A SPACE
MOV DX,OFFSET SEC_MSG ;SETUP TO OUTPUT SEC_MSG
CALL MSGOUT ;GO DO IT
MOV DL, BL ;OUTPUT THE SECTOR NUMBER
CALL DECOUT ;IN DECIMAL
CALL CRLF ;OUTPUT A CARRIAGE RETURN LINE FEED
MOVCX, 4 ;NUMBER OF LINES TO DISPLAY

SHOWA: PUSH cx ;SAVE CX AS LINE COUNTER
MOVCX,40H ;CX AS BYTE COUNTER

SHOW2: MOV DL, {SI] ;OUTPUT THE CONTENTS OF THE BYTE
MOV AL, DL ;POINTED TO BY THE INDEX REGISTER
CALL OUTPUT
CALL KEY_CTRL ;CHECK KEYBOARD FOR INPUT?
INCSI ;ADVANCE THE INDEX ADDRESS ONE BYTE
LOOP SHOW2 ;SHOW 64 BYTES

CALL CRLF ;NEW LINE

POPCX ;GET CX AS THE LINE COUNTER
LOOP SHOWA ;SHOW 4 LINES

CALL CRLF ;NEW LINE

INC BL ;NEXT SECTOR NUMBER

POPCX ;GET CX AS SECTOR COUNTER

LOOP SHOW1
SHOW4: RET
SHOW ENDP

;REPEAT FOR 16 SECTORS
;RETURN TO CALLING ROUTIRE

; THE DECOUT PROCEDURE CONVERTS BINARY NUMBERS TO DECIMAL ASCII
NUMBERS

;THE INPUT IS A BINARY NUMBER IN REGISTER DL

; THE OUTPUT IS SENT TO THE VIDEO MONITOR FOR DISPLAY

DECOUT PROC NEAR
PUSHR ;SAVE THE REGISTERS
MOVCX, 0 ;2ZERO CX AS COUNTER
MOV DI,OFFSET DECIMAL_ BUFF ;DECIMAL_BUFF WILL RECEIVE THE
;DECIMAL NUMBER

DECOUT1:

PUSH CX ;SAVE THE COUNT

MOV AL, DL ;AX HAS THE NUMERATOR

MOV AH, 0 ;CLEAR THE UPPER HALF

MOVCL,10 ;DIVISOR OF 10

pIvVCL ;DIVIDE

MOV DL, AL ;PUT QUOTIENT IN DL

MOV AL, AH ;PUT THE REMAINDER IN AL

ADD AL, 30H ;MAKE REMAINDER AN ASCII NUMBER

MOV [DI]),AL ;STORE IT IN DECIMAL_BUFF

INC DI ;POINT TO NEXT BYTE OF DECIMAL_BUFF

POP CX ;GET THE COUNT

INC CX ;ADD ONE TO IT

CMPDL, 0 ;IS THE QUOTIENT ZERO?

JNZ DECOUT1 ;NO, DIVIDE IT BY 10 AGAIN
DECOUT2

DEC DI ;YES, BACK UP A BYTE IN DECIMAL_BUFF

eight bit I/O ports requires some manipulation. After the twenty
bit address value has been computed the least significant eight bits
are sent as a byte to I/O port 4, then the next significant eight bits
are also sent as a byte to I/O port 4 and finally the most significant
four bits, right justified in a byte, are sent to I/O port 81H where
only the bits in the least significant nibble are used. The DMA
controller is built to interpret the data it receives this way as a
twenty bit address.

The byte count of the data to be transferred has a similar prob-
lem. Its value requires up to sixteen bits, a page of memory. The
sixteen bits are sent to I/O port 5, least significant byte first fol-
lowed by the most significant byte. Cross page transfers require a
change in the value sent to the page register and therefore an up-
date of the address and byte count values at each page boundary.

The channel number, in this case 2, is sent to I/O port 0AH,
the Mask Register, to enable DMA for that channel. This is the
last thing done in the initialization of DMA. The DMA chip now
awaits the appearance of data, one byte at a time, at the Data
Register of the FDC.

The program now instructs the FDC to read and send a full
track of data to its Data Register one byte at a time. The “Read a
Full Track” function of the FDC chip requires sending the chip a
nine byte command string. The nine bytes contain the following
information:

The op-code for "Read a Full Track”, 062H

A byte with the drive and head information in it
The track number

The head number

The number of the sector at which to start reading
A code number indicating the size of the sectors
The number of the last sector on the track

The length of Gap 3 in bytes

The data length

oNOGAGN

Upon receipt of the ninth byte the FDC begins its read opera-
tion. When it has finished its operation the FDC will return an
interrupt. Therefore, having started the read the program waits for
the interrupt before moving on.

Before going further four bytes of the above FDC command
string should be explained. Bits 0-1 of byte 2 carry the selected
drive information, 00 = A, 01 = B, 10 = Cand 11 = D. Bit 2 of
byte 2 is the selected head information, 0 = one side, 1 = the
other side. The remaining bits are filled with zeros. The short piece
of code at the end of the SETUP procedure of the program forms
this byte from the drive and head information input from the key-
board.

Bits 0-2 of byte 6 are used to inform the FDC of the number of
bytes per sector on the diskette, for double-sided double-density
diskettes, 001 = 256, 010 = 512,011 = 1024, 100 = 2048 and 101
= 4096. The remaining bits are filled with zeros.

Bits 0-1 of byte 9 informs the FDC of the number of bytes to
read from a sector, OFFH is the normal value if byte 6 has one of
the values given above. However, if byte 6 is made 0, the value in
byte 9 is the number of bytes the FDC is to read from a sector.
This permits the partial reading of sectors. Not a particularly use-
ful function and therefore the value of byte 9 is usually made
OFFH which causes the FDC to read the number of byte per
sector coded by byte 6 or complete sectors.

Floppy disk drives have errors in timing built into them which
result from the fact that the devices are electro-mechanical in na-
ture. No matter how carefully the parts are made there wili be
variations in the actions of the drives which will result in timing
errors and therefore read/write errors. These errors are taken care
of by the use of filler areas on the tracks called gaps.

The gaps are written on each track when the diskette is format-
ted. The tracks start with Gap 5, the pre-index gap. This gap starts
at the physical index mark, the point in the diskette which is under

MOVAL, [DI] ;PUT CONTENTS OF THAT BYTE INTO AL
CALL OUTPUT ;OUTPUT THE DECIMAL DIGIT
LOOP DECOUT2 ;DO IT AGAIN TILL CX IS O
POPR sRESTORE THE REGISTERS
RET ;RETURN TO CALLING ROUTINE

DECOUT ENDP

;THE SETUP PROCEDURE DISPLAYS MESSAGES ON THE VIDEO MONITOR ASKING
FOR

;KEYBOARD INPUT OF THE DRIVE NUMBER, HEAD NUMBER AND TRACK NUMBER.
;1T CHECKS THE KEYBOARD INPUT FOR THE CORRECT RANGE OF VALUES IN EACH
;CASE AND STORES THE SELECTED VALUES IN THE VARIABLES DRIVE,
MOTOR_ON,

;HEAD AND TRACK.
;DRIVE_HEAD.

FURTHER, IT CALCULATES AND STORES THE VALUE FOR

SETUP PROC NEAR

GETDRV: CALL CRLF ;NEW LINE
MOVDX,O0FFSET MSG_DRV ;SETUP TO OUTPUT THE GET DRIVE MESSAGE
CALL MSGOUT ;GO DO IT
CALL KEYIN ;GET A CHARACTER FROM THE KEYBOARD

CMP AL, O ;IF IT IS A O, YOU WANT DRIVE A

JE DRVA ;GO TO DRIVE A SETUP ROUTINE
CMPAL,1 ;IF IT IS A 1, YOU WANT DRIVE B

JE DRVB ;GO TO DRIVE B SETUP ROUTINE

CALL ERROR ;ANY OTHER CHARACTER 1S AN ERROR
JMP GETDRV ;SAY SO AND REPEAT GETDRV

DRVA: MOVDRIVE, 0 ;PUT A O INTO THE VARIABLE DRIVE
MOV MOTOR_ON,1CH ;INIT MOTOR_ON TO TURN DRIVE A ON
MOVMOTOR_OFF,0 ;INIT MOTOR_OFF TO TURN DRIVE A OFF
JMP GETHD ;GO GET THE HEAD NUMBER

DRVB: MOVDRIVE,1l ;PUT A 1 INTO THE VARIABLE DRIVE
MOVMOTOR_ON,2DH ;INIT MOTOR_ON TO TURN DRIVE B ON
MOVMOTOR_OFF,1 ;INIT MOTOR_OFF TO TURN DRIVE B OFF

GETHD: MOVDX,OFFSET MSG_HD }SETUP TO OUTPUT GET HEAD MESSAGE

CALL MSGOUT ;GO DO IT

CALL KEYIN ;GET CHARACTER FROM THE KEYBOARD
CMPAL, O ;WAS IT 07

JZ SETHD ;YES, SET HEAD TO 0O

CMPAL,1 ;NO, WAS IT 17

JZ SETHD JYES, SET HEAD TO 1

CALL ERROR sANYTHING ELSE IS AN ERROR, SAY SO
JMP GETHD ;AND REPEAT GETHD

SETHD: MOV HEAD, AL ;STORE HEAD NUMBER IN VARIABLE HEAD

GETTRK: MOV DX,OFFSET MSG_TRK ;SETUP TO OUTPUT GET TRACK MESSAGE

CALL MSGOUT ;GO DO IT
MOV DX, 0 ;CLEAR DX
GETDIG: MOV AH,1 ;GET A CHARACTER FROM THE KEYBOARD
INT 21H +BY CALL TO DOS INTERRUPT
CMP AL, ODH ;WAS IT AN ENTER (CARRIAGE RETURN)
JE SETTRK ;YES, YOU HAVE IT ALL, GO SET THE TRACK
CMPAL,’0’ ;IF INPUT CHARACTER IS LESS THAN ‘0’ ASCIX
JB NOGOOD ;DISALLOW IT
CMP AL, '9"* ;IF INPUT CHARACTER IS MORE THAN ‘9' ASCII
JA NOGOOD ;DISALLOW IT
AND AL, OFH ;CONVERT ASCII NUMBER TO BINARY
CBW ;CONVERT BYTE TO WORD (AX = AL)
PUSH AX ;SAVE THE NUMBER
MOV AX,DX ;AX IS DX
MOV CX, OAH ;PREPARE TO MULTIPLY AX BY 10
MULCX sMULTIPLY
MOV DX,AX ;SAVE THE PRODUCT IN DX
POP AX ;GET THE NUMBER THAT WAS SAVED IN AX
ADD DX, AX ;ADD IT TO WHAT IS IN DX
JMP GETDIG ;GET THE NEXT DIGIT FROM THE KEYBOARD

NOGOOD: CALL ERROR ;OUTPUT THE ERROR MESSAGE AND
JMP GETTRK ;REPEAT THE GET TRACK ROUTINE

SETTRK: CMP DL,O ;DL HAS THE TRACK NUMBER IN IT

JB NOGOOD ;IF THE TRACK NUMBER IS LESS THAN 0 REDO IT
.CMPDL,27H ;IF THE TRACK NUMBER IS MORE THAN 39
JA NOGOOD ;REDO IT

MOV TRACK,DL ;OK, STORE TRACK NUMBER IN VARIABLE TRACK
CALL CRLF ;OUTPUT A NEW LINE

;MAKE UP THE DRIVE_HEAD BYTE FROM THE INPUT VALUES OF DRIVE AND HEAD

MOVDL,DRIVE ;DRIVE IS IN BITS 0-1 OF DL

MOV AH, HEAD JHEAD IS IN BIT 0 OF AH

SALAH,1 $SHIFT HEAD BIT TO BIT 1 OF AH
SALAH,1 ;SHIFT HEAD BIT TO BIT 2 OF AH
ANDAH, 4 $ZERO ALL BITS OF AH BUT BIT 2

OR AH,DL ;PUT DRIVE BITS INTO BITS 0-1 OF AH

MOV DRIVE_HEAD,AH ; STORE VALUE IN DRIVE_HEAD BYTE
RET ;RETURN TO CALLING ROUTINE

ERROR: MOVDX,OFFSET ERR _MSG ;SET-UP TO OUTPUT THE ERROR MESSAGE
CALL MSGOUT ;GO DO IT
RET sRETURN TO CALLING ROUTINE

SETUP ENDP

;KEYIR (KEYBOARD INPUT) PROCEDURE USES A DOS INTERRUPT FUNCTION
;TO INPUT A SINGLE CHARACTER FROM THE KEYBOARD. THIS ROUTINE IS
;USED TO INPUT DIGITS FROM THE XKEYBOARD AND CONVERT THE ASCII
;FORM TO BINARY FOR USE BY THE PROGRAM. THE BINARY BYTE IS
JRETURNED IN REGISTER AL.

KEYIN PROC NEAR

MOV AH, 1 ;USE DOS INTERRUPT CALL TO INPUT

INT 21H ;A DIGIT FROM THE KEYBOARD

SUBAL,30H ;CONVERT FROM ASCII TO BINARY

CALL CRLF ;OUTPUT A CARRIAGE RETURN LINE FEED

The Computer Journal / #43

the heads when the small hole in the diskette passes its LED and
photo cell detector. Gap 5 is followed by the index address mark
which identifies the start of a track. This in turn is followed by Gap
1, the post index gap.

Next is written sector information for sector 1. It starts with a
Data Address Mark followed by the ID field for sector 1. This
contains track, head, sector address, sector length and two bytes
for CRC information for the sector. Then follows the post sector
ID field Gap 2. Then the sector 1 data field is written filled with a
. fill character supplied by the formatting program. This field is fol-
lowed by the post data field Gap 3.

The sector information above is repeated with only a change in
the sector number for however many sectors are to be written to
the track. The final gap written on the track is Gap 4 which is a
filler used to take up the space between the last physical data field
‘on the track and the physical index mark, the start of Gap 5, the

_start of the track.

The size in bytes of Gap 1, Gap 2, Gap 5, the Index Address
Mark and the sector ID fields are fixed and are written by the
FDC during formatting. To allow for different track formats Gap
3 has been made variable and its length can be selected by the
programmer. Its minimum size must be long enough to inciude
the write turn-off time of the drive as Gap 3 passes under the write
head. Its maximum size must be small enough to permit all sectors
to fit on to the track. Gap 3 for the last sector on the track be-
comes part of Gap 4. The length of Gap 4 is also variable but not
under direct control of the programmer, as is Gap 3. Its length
depends upon the format selected for the diskette. The control
electronics of the drive computes its length such that the total
number of bytes recorded on the formatted diskette will equal the
nominal unformatted capacity of the track which is 6250 bytes for
double-density recording. There are of course recommended val-
ues for Gap 3 for standard numbers of sectors on a track. The
value in byte 8 of the command string is the length of Gap 3 in
bytes which will properly read the 16 sector 256 byte per sector
format used by Dysan for its double-sided double-density Digital
Diagnostic Diskette.

When the interrupt occurs indicating that the read operation
has been completed our program turns off the motor of the se-
lected drive.

The remaining procedures in the program are straight forward
coding. The one called SHOW displays on the video monitor the
data that has been read from the disk by the drive. It presents the
data a sector at a time in four lines of sixty four characters each.
Each sector is labeled with its track number, head number and
sector number. The DECOUT procedure converts binary num-
bers to decimal ASCII numbers for use in the labels.

The SETUP procedure is the part of the program that inter-
acts with the user. It asks for the drive number, the head number
and the track number, checks their values to assure that they are
within proper range, asks for corrections if they are not and fills in
the variables that are needed by the READ-TRACK routine.

By the use of this program and the Dysan Diagnostic Diskette I
was able to determine that my drives were indeed in need of align-
ment. These were QumeTrak 142 drives. As received the best they
would do was read out to sectors seven and eight on the progres-
sive offset tracks. I was able to realign them by taking the tension
off the mounting screws that hold the stepper motor in place, then
using a prick punch and a light hammer I gently rapped the
mounting ears and ran the program to see what progress had been
made. In a very few tries I was able to reposition the stepper
motors so that both drives would read out to sectors eleven and
twelve. Then I retensioned the mounting screws and tried to run
Flight Simulator. It loaded and ran from either drive. I quit while I
was ahead. I have had no further problem with these drives.

Other tests can be run with this program since it will read other
tracks on the Digital Diagnostic Disk in addition to the progressive
offset ones. For example, I ran the Head Azimuth Alignment test

The Computer Journal / #43

RET ;RETURN TO CALLING ROUTIRE
KEYIN ENDP

;MSGOUT (MESSAGE OUTPUT) PROCEDURE USES A DOS INTERRUPT FUNCTION TO
;OUTPUT AN ASCII STRING TO THE VIDEO DISPLAY. THE STARTING ADDRESS,
;ITS OFFSET IN THE DATA SEGMENT, MUST BE IN REGISTER DX WHEN THE
;PROCEDURE IS CALLED. THE ASCII STRING MUST BE TERMINATED BY THE
;CHARACTER §.

MSGOUT PROC NEAR

MOV AH, 9

INT 21H

RET ;RETURN TO CALLING ROUTINE
MSGOUT ENDP

;KEY_CTRL PROCEDURE IS DESIGNED TO GIVE THE OPERATOR CONTROL OF THE
;PROGRAM DURING THE DISPLAY OF WHAT HAS BEEN READ FROM THE SELECTED
; TRACK.

H THREE INPUTS HAVE MEANING

H CONTROL C = QUIT AND RETURN TO DOS

H CONTROL A = INTERRUPT AND RESTART THE PROGRAM ANEW

; ESC = A TOGGLE THAT STOPS AND STARTS THE DISPLAY
H

;ANY OTHER INPUT IS IGNORED.
i
;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.

KEY_CTRL PROC NEAR
PUSHR ;SAVE THE REGISTERS

MOV AH, 6 ;PICK-UP KEYBOARD INPUT IF THERE IS ANY
MOV DL, OFFH ;BUT DO NOT WAIT FOR IT
INT 21H ;RETURN TO CALLING PROGRAM IF

JZ KEY4 ;THERE 1S NO INPUT
CMPAL,3 ;IF THERE WAS INPUT, WAS IT A CTRL_C?
JNEKEY1 ;NO, MAKE THE NEXT TEST
MOV AH, 4CH ;RETURN TO DOS
INT21H ;BY CALL TO DOS INTERRUPT
KEYl: CMPAL,1l ;WAS THE INPUT A CTRL_A?
JNEKEY2 ;NO, MAKE THE NEXT TEST

JMP START ;YES, RESTART THE PROGRAM
KEY2: CMPAL,1BH ;WAS THE INPUT AN ESC?
JNEKEY4 7NO, RETURN TO CALLING ROUTINE
KEY3: MOVAH,8 ;YES, HALT THE DISPLAY AND WAIT FOR MORE
INT21H ;KEYBOARD INPUT
CMP AL, 1BH ;HAS ANOTHER ESC COME IN?
JNEKEY3 ;NO, LOOP UNTIL IT DOES
KEY4: POPR ;RESTORE THE REGISTERS
RET FRETURN TO CALLING ROUTINE
KEY_CTRL ENDP

;DELAY PROCEDURE TAKES UP TIME, IN DO NOTHING LOOPS, PROPORTIONAL
;TO THE PRODUCT OF THE INITIAL VALUES IN THE BX AND CX REGISTERS.
;NO INPUT IS REQUIRED.

H

;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.

DELAY PROC NEAR

PUSHR ;SAVE THRE REGISTERS
MOVCX,1000 ;USE CX AS A COUNTER
MOV BX, 600 ;USE BX AS ANOTHER COUNTER

HOLDIT: LOOP HOLDIT
MOV CX,1000 FRESET CX
DEC BX ;REDUCE BX BY ONE

;NULL LOOP TILL CX = 0

JNE HOLDIT ;DO THE NULL LOOPS AGAIN

POPR ;RESTORE THE REGISTERS

RET sRETURN TO CALLING ROUTINE
DELAY ENDP

;CLRSCR (CLEAR SCREEN) PROCEDURE USES A DOS INTERRUPT FUNTION TO
;CAUSE THE SCREEN OF THE VIDEC DISPLAY TO BE CLEARED AND TO
;HOME THE CURSOR. NO INPUT IS REQUIRED.

H
;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.

CLRSCR PROC NEAR

PUSHR ;SAVE THE REGISTERS

MOV AX,2 ;CALL DOS TO CLEAR THE SCREEN
INT 10R ;AND HOME THE CURSOR

POPR ;RESTORE THE REGISTERS

RET FRETURN TO CALLING ROUTINE

CLRSCR ENDP

;CRLF PROCEDURE (NEW LINE) PLACES A CARRIAGE RETURN CHARACTER IN THE
;REGISTER AL AND CALLS OUTPUT TO TRANSFER IT TO THE VIDEO DISPLAY.

; THE PROCEDURE THEN DOES THE SAME WITH A LINE FEED CHARACTER.

;NO INPUT IS REQUIRED.

H
;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.

CRLF PROC NEAR
PUSHR
MOV AL, ODH
CALL OUTPUT
MOV AL, OAH
CALL OUTPUT
POPR ;RESTORE THE REGISTERS
RET ;RETURN TO CALLING ROUTINE

CRLF ENDP

;SAVE THE REGISTERS
;OUTPUT A CARRIAGE RETURN

;OUTPUT A LINE FEED

;SPACE PROCEDURE PLACES THE CHARACTER ' ', (SPACE) IN REGISTER AL
;AND CALLS OUTPUT TO TRANSFER SPACE TO THE VIDEO DISPLAY.

i
;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.
SPACE PROC NEAR

PUSHR
MOVAL,' '

;SAVE THE REGISTERS
;OUTPUT A SPACE

by reading track 34. However, correcting a problem with Head
Azimuth Alignment is not field serviceable for QumeTrak 142
drives. My drives appeared to be pretty good. However, I could
have done nothing about it if they had not.

Modifications to the program would be required to run the
other tests listed above. However, not having the specifications the
drives should meet would make the test results all but meaning-
less.

If you are going to buy and use drives of unknown condition

- and history I strongly recommend you also buy a Dysan Digital

Diagnostic Diskette so as to be able to test and adjust the Head

Radial Alignment for yourself. Being able to do so and also to test

and adjust drive rotational speed with available public domain

software will enable you to standardize your drives and keep them
that way. @

References

Testing Your Disk Drive, Mini-Micro Systems for June 1981
Cahners Publishing Company.

Digital Diagnostic Diskette - Information Dysan CE Division —
A Xide Company.

Loren Amelang Dysan’s Digital Diskette Diagnostic Dr. Dobb’s
Journal, December 1983.

Service Manual for the Qumetrk 142 Flexible Disk Drive.

‘Microsystems Components Handbook Volumes 1 & 2, INTEL
1985.

Jeffrey P. Royer Handbook of Software & Hardware Interfacing
for the IBM PCs, Prentice-Hall 1987.

Robert Jourdain Programmer’s Problem Solver for the IBM PC,
XT & AT, Brady Communications Company, Inc. 1986.

CALL OUTPUT

POPR ;RESTORE THE REGISTERS
RET ;RETURN TO CALLING ROUTINE
SPACE ENDP

;OUTPUT PROCEDURE USES A DOS INTERRUPT FUNCTION TO OUTPUT A CHARACTER
;TO THE VIDEO DISPLAY. THE PROCEDURE REQUIRES THAT THE
CHARACTER TO

;BE OUTPUT BE IN REGISTER AL WHEN THE PROCEDURE IS CALLED.

i
;ALL REGISTERS ARE SAVED AND RESTORED BY THE PROCEDURE.

OUTPUT PROC NEAR

PUSHR ;SAVE THE REGISTERS

MOV DL, AL ;PLACE CHARACTER TO BE OUTPUT IN DL
MOV AH, 2 ;USE DOS INTERRUPT CALL TO OUTPUT
INT 21H ; THE CBARACTER

POPR ;RESTORE TBE REGISTERS

RET ;RETURN TO CALLING ROUTINE

OUTPUT ENDP

CODE ENDS

END MAIN

User Disk

The code from Standardize Your Floppy Disk
Drives and Graphics Programming With C On the
IBM PC are available on a 5.25" 360K PC format
disk for $10 postpaid in the US.

-

e 780A 4 MHz CPU with 64 K of RAM

o 2 Serial ports
® 1 Parallel port

(Xerox 16 / 8 DEM-II C
New dual system computers with the Disk Expansion Module. These systems include the following;:
e 8086 4.77 MHz CPU with 128 K RAM
® 10 Meg 5.25" hard drive (NOT 8")

e 322 K DSDD floppy drive
e Low-profile programmable keyboard

Ompute rs

® Monitor

CP/M-80 2.2, CP/M-86, and “Select” word processor are included. MS-DOS 2.01 is available as an
option for an additional $35.

Cost is $329 plus $50 shipping in the US. This also includes a one year subscription to The Com-
puter Journal (current subscribers should include a photocopy of their label so that their subscription
can be extended). Registered owners of NZCOM receive a discount of $15. If you order NZCOM at
the time of the order, deduct the $15. Order by personal check, bank cashier's check or money order.
Personal checks held ten days. Allow 4 to 6 weeks for delivery.

Chris McEwen — Socrates Z Node 32

PO Box 12, S. Plainfield, NJ 07080
k (201) 754-9067 3/12/24 bps

_J

10 The Computer Journal [#43

LSH

A New History Shell for Z-System

by Rob Friefeld

Scripts, aliases, shells—a number of command line generating

. aides were built into Z-System from the beginning. Over the past

few years, more and more powerful tools have been developed to
make use of them. In this article, I would like to describe a history
shell called LSH.

What is a History Shell?

A Z-System shell is a program which runs instead of the
ZCPR3 command processor whenever you would normally see
the system prompt. The shell then accepts input in its own fashion.
What distinguishes a shell from a regular utility is that the shell can
turn control over to other programs and be automatically rein-
voked when they are finished--much like ZCPR itself. The effect is
to extend the command processor by surrounding it with a “shell”
for the user’s convenience.

A simple use of this wondrous process would be a front end
program to extend the rudimentary line editing capabilities of the
command processor (essentially, “delete last character” and “start
over”). It would be nice to have text editing features, such as
cursor movement and character insertion, to correct mistakes.
Once the edited line is complete, the shell loads it into the com-
mand line buffer and turns it over to ZCPR3 for execution, just as
if it had been entered directly at the ZCPR3 prompt. If we add to
that a mechanism for recording and recalling command lines, we

" have the makings of a history shell.

Here are some history shell uses and their benefits that imme-
diately come to mind:

1) Reuse command lines.
- Save a lot of typing.
- Avoid making typos.
- Write more complex and efficient command lines.
2) Edit command lines.
- Correct typing errors on the current line.
- Correct commands which didn’t work.
- Make alterations before re-running a command.
e.g. LINK TEST/N /A:100 TEST,Z3LIB/S,SYSLIB/S ,/E
LINK TEST/N /A:8000 ... etc.
3) Keep a command record.
- What commands did I use the last time I did this?
- How did I get into this mess?

Those who type commands more than once would likely be
delighted with these features. There is a price to pay, though. Sys-
tem response time is slowed by extra disk accesses. The history
shell must load again after every command line is run, even the
most trivial. It must also update the history. There is, then, some
limit on the size of a practical history shell. On a floppy based
system, history shells perform with all the agility of a walrus on
roller skates. Hard disk performance is quite acceptable, and a
RAM disk is wonderful.

A history shell could be implemented as a memory resident
system extension (RSX) or an RCP segment. With no disk access,
it would run instantly. (Carson Wilson’s new Z34RCP 1.1 contains
such a shell.) The price there is a reduction of free memory, an
absolute minimum of program features, and some awkwardness in

The Computer Journal / #43

recording the history permanently.

History Shell Background

LSH was developed out of experience with three predecessors:
Michael Rubenstein’s HSH, NHSH by John Poplett (a conversion
of HSH from C to assembler with additional features), and Paul
Pomerleau’s EASE. The latter is the most powerful of these.

In brief, the EASE user interface appears to be a blank line, as
in the normal operating environment. You can type a line and
execute it in the usual way. It is then appended to a history file
consisting of null terminated command lines, as many as will fit on
disk. Old lines can be recalled in reverse sequence or by match toa
few starting characters. Configuration possibilities include com-
plete customization of the command key set, and not recording
short or recalled lines. A separate maintenance utility can be run
on the history file now and then to clean out duplicate lines and
trim down its size.

LSH History Shell

LSH shares many of these features but has at heart a different
paradigm. LSH may be thought of as a full screen text editor
which generates command lines. Its history file is an ordinary text
file named on invocation. Command lines are recalled by moving
the cursor back in the file, matching a string, or setting a pointer to
repeat a command sequence. Because the output file is text, it is
accessible to other text handling tools. For example, a full-size
editor can be brought to bear for duties such as block deletes,
block moves, or global find/replace.

Recording the history to a text file does not in itself require a
screen oriented editor. In fact, LSH has a line mode which superfi-
cially appears to work like the regular CPR. However, the full
screen editor interface literally adds another dimension to the his-
tory shell idea. Once a few lines are typed, we have what amounts
to an instant menu of command lines to chose from. Just move the
cursor to one of them, and press CR (carriage return). When we
consider an array of command lines as TEXT, it is easy to conceive
of concatenating them, splitting them up, shuffling their order,
introducing explanatory comments, deleting useless ones, etc. In
short, we have much more control over the history being gener-
ated.

I'll admit that LSH is not producing a true history, since history
cannot be changed. LSH’s “meta-history” is in reality a command
file, hence the default history file type CMD. Rather than faithfully
recording every command line — good, bad, or ugly—the LSH his-
tory file evolves as we refine it to help handle the tasks at hand.
EASE’s history is more like a ticker tape: you can only update it at
the end.

Invoking LSH
The history file name can be specified on the command line,

e.g.,

C15:WORK>LSH PROJECT

"

If no directory is specified for the history file, LSH first looks
for the named file in the logged directory, then in the directory
from which LSH.COM was loaded. For example, if LSH resides
on a RAM disk directory named TOP, which is on the path, then
the example command line starts LSH with
WORK:PROJECT.CMD, or, if that file does not exist,
TOP:PROJECT.CMD. If that file also does not exist, then it will
be created. (The ZSDOS path feature adds still other possibili-
ties.)

If no log file name is given, LSH uses a default file name--
LSH.CMD. You may wish to rename LSH, in which case the de-
fault file name is taken from the current program name, €.g.,
X.CMD. The default file type can be installed if you prefer VAR
or something else, or can be set blank. If your LSH command line
,specifies a file with an explicit file type, then it will be used.

Using LSH

Whenever carriage return is pressed, the current line (the one
where the cursor is) is put into the command line buffer and run.
(Lines headed with “;” are comments and do not run.) If you do
nothing but type command lines and run them, LSH does nothing
but record them; its presence won’t be that obvious. When you
switch to Screen Mode with ESC ESC (pressing the escape key
twice), you will see something like this:

C15:WORK 10:30p +

zde mxo-s8b31.280

8lr mxo-sb3l/h

mload mex.com,mxo-sb31.hex
mex

The top line shows the logged DU:DIR and the system time. The
“4+” indicates that recording is ON. A “-” appears when it is OFF.
(The Line Mode prompt shows “>>"".

The number of lines in the text window may be set on-the-fly
(ESC T). 1 find that a window of 4-5 commands is enough to tell
where I am in the file and what is coming. Performance is also
crisper when the entire screen doesn’t have to be rewritten. To
really get a look at the history, though, the entire screen can be

~used.

None of the usual “save and exit” or “save and continue” com-
mands are implemented. Instead, LSH has a recording toggle
(ESC S, Save). When ON, the history file is updated on every
command execution if there have been any changes to it. When
OFF, you can still enter, edit, and execute lines, but any changes
won’t be there when LSH is back. To get out of the shell, use ESC
Q (Quit).

Normally, LSH leaves its display at the top of the screen and
console output appears below. If LSH is using many lines, you may

" need a shell pause to examine the screen before LSH resumes.
For example, the output of a DIR command could be obliterated
before there is a chance to look at it. You can force a pause by
pressing ESC-CR instead of CR to execute a line. For conven-
ience, LSH automatically does a shell pause when it is set to show
10 or more history lines. The 10 line decision point may be config-
ured to O for a pause every time, or to 99 for no pauses.

One other point on shell operation: as LSH is distributed, "C is
used as an editing control in Screen Mode. Initiating a warm boot
requires ESC C.

Using the Editor

I won’t go into detail on the usual editing functions. The de-
fault command key set uses the WordStar standard as a starting
point. It may be completely reconfigured with the installation pro-
gram, LSHINST.

LSH has two text recovery functions. “Unkill” (*U) is for re-
covering text deleted by a “delete line” or “delete to end of line”
command. This is not only for recovering from a mistake, but for
moving a string to a different cursor position. “Undo” ("QU) can-

12

cels any changes made to the current line UNLESS it has been
deleted. (It works like the undo command in the Turbo Pascal
editor.) The ultimate “undo” is to toggle recording OFF then exe-
cute a blank command line. That recovers the history unchanged.

There is one mass deletion command, “zap” ("KZ). Tt clears
everything after the cursor position.

LSH has three methods of jumping to a specific point in the
history file: string search, line sequencing, and position markers.

String Search

After the manner of HSH, LSH has a simple string search
feature. Type a few characters, then initiate the search ("O, Old
Line). LSH looks back for another line which begins with the same
string. When found, the line is displayed without changing the cur-
sor position. Another search command will then automatically
look for the same string farther back in the history. For example,
after the series of command lines:

1 ZDE LSH.ART
2 CP LSH.ART BACKUP:
3 ZDE LSH.LOG

the cursor will be on the beginning of a fourth, blank line. Typing
“ZDE"O” moves the cursor to line 3. Another O (without mov-
ing the cursor) goes to line 1.

When the search is successful, the line the search started on is
not changed. That means that the search string can be typed on a
blank line, or even at the start of a non-blank line, without perma-
nently entering anything. In the example, line 4 will still be blank
when we return to the end of the history.

The search direction may be toggled forward or backward
(ESC O). The current direction is saved on the shell stack between
LSH runs.

Automatic Line Sequencing

Certainly the main idea of a history shell is that old commands
may be reused. More than that, we will often want to repeat a
sequence of command lines. The history file T used to work on
LSH has sequences of this sort:

ZDE LSH.280

SLR LSH/R

ZDE LEDIT.Z80

SLR LEDIT.Z8C

LINK LSHE/N /A:8000 /J LSH,LEDIT,HRMIN,BGSIG,/E

You can imagine how many times I cycled through those com-
mands! To facilitate that, LSH has an “auto line sequencing”
toggle (ESC L). When OFF, LSH comes up on a blank line at the
end of the history file. A “line recall” command ("L) jumps to the
line following the one just executed. When ON, a line recall is
done automatically, presenting each line of the history in turn. A
simple carriage return continues the sequence.

For convenience, the screen and line modes use independent
flags for this function. You can set screen mode to track the se-
quence while line mode comes up at the end of the history.

The feature works by saving a pointer to the text line wanted. It
usually works well but can be fooled, such as when the history is
edited independently or when the recording toggle is OFF but the
text has been changed.

Markers

A third way to jump about in the history file is by setting line
markers. To mark the current line, press “PZ. Any number of
markers may be set. To go to a mark, press “QZ. All the marked
lines are visited in reverse order to the beginning of the history,
then wrapped to the end. To clear all of the markers, use "KH.
Use a marker in conjunction with line sequencing to cycle a series
of lines repeatedly.

Advanced Features—The Queue
By an “advanced feature”, I mean one that you will forget

The Computer Journal / #43

about if you don’t use LSH regularly—and that you can lead a
perfectly happy life without.

1 didn’t want to greatly increase the size of LSH to include the
usual block operations of a text editor. They wouldn’t be used that
often, and in any case, we can just call up our editor for such
service. Nevertheless, I thought it would be handy to have some
internal way to move command lines around. A queue was €asy to
implement and also has some advantages in this application.

The available queue commands (with default control settings)
. are:

“KB Add line to gqueue, advance to next line.
"KK ‘‘Reep and Kill’’ (add to queue, delete from history).
“KI Insert the lines from the queue at the cursor line.
“KV Do a "KI, then clear the queue.
“KY Just clear the queue.

. "B Duplicate the current line.

With a queue, we quickly pick up lines in the order we want
them, then deposit them elsewhere or save them from a mass
deletion. It is much easier to reorder a list with a queue than with
WordStar-style block commands. Try it!

The line duplication command is a one-keystroke way to get
another copy of the current line. It may be installed to automati-
cally substitute the string “GQ” for the first token.

Advanced Features — Token Repeat

Token repeat is a typing aid. Tokens are considered to be
words separated by spaces or certain other punctuation. The de-
fault separators are ;:.,/=. Consider the line:

ZDE MYPROG.Z80;Z80ASM MYPROG/R;LINK MYPROG/N MYPROG /E

The “MYPROG” token does not have to be retyped each
time. Just use the editing command to repeat token #2 (TAB 2).
The token will be entered at the cursor according to the setting of
the insert/overwrite toggle. Token repeat works for token numbers
1-9, but it would take a sharp eye to count beyond the first few.

Token repeat puts the selected token in the same buffer used
by the unkill command. Therefore, an unkill (*U) will enter the
last selected token again, even if the cursor is now on another line.

There is one other wrinkle to this feature. The text from the

. cursor to the end of the line can be put into the unkill buffer
directly (TAB TAB). I frequently use this to replicate and re-run
just the end of a multiple command line.

Log File Size

There wouldn’t be much point to a full screen editor if only a
line or two were in memory at one time. On the other hand, read-
ing in a big history file on every invocation takes time and memory.
As a compromise, LSH reads and writes the entire file on each
invocation until it reaches a preset size, say Sk. After that, LSH
only has access to the last 5k of the file. The history file continues
to grow without taking up more and more memory and without
progressively slowing system response. The default 5k size would
hold several hundred typical command lines.

The preset size may be installed with LSIT’s configuration pro-
gram. The type-4 version of LSH automatically adjusts its run
location to the chosen buffer size. The type-3 version always runs
at 8000h and may give an overflow message if there is not enough
room in the TPA to handle a large file buffer. Most systems will
have room for 8-12k of history file.

On-Line Help

HELPLSH.COM is a separate utility which displays a help
screen of control key bindings as currently installed. It obtains its
information from LSH’s memory image, so it must be run from
within LSH. I chose not to include the code for the help screen in
LSH itself to keep the program size down.

“HELPLSH” is actually an internal command line which is run
automatically when the help key is pressed (ESC I). A benefit to
practiced users is that this internal command line may be set to

The Computer Journal / #43

something else. For example, it could be set to run an ARUNZ
alias (e.g. /LSHCMD) which in turn could be set up for whatever
job seemed useful at the moment. I use ZFILER frequently and
have simply installed the line as “ROOT:ZF”.

LSH Installation Program

One of the major design goals was to make LSH as easy as
possible to completely reconfigure. I am happy using a control key
set similar to WordStar’s, but many of you strongly prefer some-
thing else. With about four dozen commands and numerous op-
tions, hand patching or editing an overlay was out of the question.
LSH has a menu-oriented installation program which makes it
convenient to alter things to your taste. But LSH doesn’t NEED
to be installed to run.

Companion Error Handler

Many Z-System programs invoke an error handler program
when a command line cannot be processed for some reason, such
as a reference to a nonexistent file or directory. The error handler
describes the problem and presents the bad command for disposi-
tion. ZERRLSH is one such error handler which additionally
checks to see if LSH is the current shell. If so, it will automatically
enter any corrections you make to a command line into the history
file.

In Conclusion

Ideas and suggestions still appear, so LSH is still under devel-
opment. As I write this, the current version of LSH is 1.0r. It is
available for download on Los Angeles’ Ladera Z-Node (Z-Node
Central) at 213-670-9465. The program library contains a type-3
version which runs at 8000h, a type-4 version, LSHINST.COM
(for the installation), LSH.WS (the documentation), and
HELPLSH.COM. You can also pick up ZERR12.LBR contain-
ing the error handler for use with LSH.

If you haven’t tried a history shell yet, I think there is a treat in
store foryou. @

Registered Trademarks

It.is easy to get in the habit of using company trademarks as
generic terms, but these trademarks are the property of the re-
spective companies. It is important to acknowledge these trade-
marks as their property to avoid their losing the rights and the
term becoming public property. The following frequently used
trademarks are acknowledged, and we apologize for any we have
overlooked.

Apple II, 11+, Ilc, Ile, Lisa, Macintosch, DOS 3.3, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT, PIP; Digi-
tal Research. DateStamper, BackGrounder ii, Dos Disk;
Plu*Perfect Systems. Clipper, Nantucket; Nantucket, Inc. dBase,
dBASE 11, dBASE 111, dBASE III Plus, dBASE IV; Ashton-Tate,
Inc. MBASIC, MS-DOS, Windows, Word; MicroSoft. WordStar;
MicroPro International. IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, 7.280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi America,
Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The Computer Jour-
nal, they are acknowledged to be the property of the respective
companies even if not specifically acknowledged in each occur-
rence.

13

Letwin’s Prior Progeny

Heath's HDOS, Then and Now

by Kirk L. Thompson, Editor, The Staunch 8/89'er

From a purely “logical” point of view, the set of operating sys-
.tems programmers appears to be quite small. Certain names crop
up almost all the time and one of these is J. Gordon Letwin. He is
best know today as chief architect of MicroSoft’s OS/2. But among
aficionados of Heath/Zenith’s 8-bit systems, he is better know as
the original developer of Heath’s Disk Operating System (HDOS).

This DOS never became a threat to CP/M’s dominance as the
standard OS for 8-bit equipment, mainly because of the specific
hardware it was designed to run on. But there has been some
exciting activity over the last five years, some of it mirroring that of
those enterprising CP/M programmers who have developed

" ZCPR, NZ-COM and ZSDOS. On the other hand, Heath Co. has
provided more of its traditional support than its customers have
reason to expect. I shall discuss this, plus preface it with a brief
history of HDOS to bring those of you unfamiliar with the domain
up to speed.

HDOS Origins

The origins of this system lie in the “70’s, though certainly not
as early as Gary Kildall’s CP/M. To refresh your memory, CP/M
was first written for Intel’s 8008 MPU in *71 to use IBM’s new 8-
inch floppies. Rewritten for the 8080, Kildall’s marketing com-

' pany, Digital Research, finally turned the financial corner in 75 as
the idea of an OS standard caught on. Anyway, Heath Company
shipped its first digital computer, the venerable H-8, in the fall of
1977. As with so many of those earliest micros (the Apple II,
Radio Shack TRS-80 Model 1, and Commodore PET come to
mind), external storage was on audio cassette. Though Heath of-
fered an irascible paper tape punch/reader, too. But the poor relia-
bility of both these medias sent the designers out looking for better
.alternatives and one of these was the new 5% inch floppy drives
just coming onto the market. Shugart was the only state-side sup-
plier and the *77 to early '78 period seems to have been a race
between the major micro manufacturers to see who would release
the first floppy subsystem. Apple beat out the likes of Commodore
and Radio Shack (not to mention Heath), but the Shugarts were
themselves not yet the ultimate in trustworthiness, either.

Kirk L. Thompson is the editor of The Staunch 8/8%ers a bi-
monthly newsletter on 8-bit H/Z computers. The sample issue 1
have is twelve pages of good solid technical information for Heath/
Zenith owners. It is published 6 times a year, and the rate is 312 for
one year (plus $4 overseas), or $24 for two years (plus 38 over-
seas). Subscriptions always start and end with the calendar year.
Make checks payable to Kirk L. Thompson. You can reach him at
#6 West Branch Mobile Home Village, Route 1, West Branch, 14
52358 (319) 643-7136.

14

So half a year after its release, a ﬂoppy-disk sub-system for the
H-8 was coming off the drawing boards (using a more reliable
drive from German maker, Siemens/Wangco) and this raised the
specter of system management. The question was whether to write
something with the H-8's unique architecture (an 8K ROM moni-
tor at the bottom of memory containing the cassette I/O routines)
in mind, or adopt the rising star, CP/M ver. 1.4. Heath chose up-
ward compatibility and reliability (CP/M 1.4’s reputation in the
latter department was none too good and writing an OS is easy,
right?) and contracted with an outside consulting firm, Wintek of
Lafayette, IN. The man Wintek sent was J. Gordon Letwin.

It didn’t take long for Heath to realize that J.G.L. was one
super programmer. So they “pirated” him from Wintek. But the
hurdles this young man were to face during development and
maintenance of HDOS were the likes that none of the current
generation of application developers is likely ever to face, thank
goodness. The system was developed on a Digital Equipment
UNIX-based PDP-series mini, cross-assembled for the 8080
MPU, and downloaded to the I-8 for testing. That first version
(HDOS 1.0) was written by J.G.L. in six weeks! In addition to the
0S8, an assembler, line editor, debugger, a dialect of BASIC, and a
set of utilities were written. True to Heath’s tradition, the system
was designed for the inexpericnced and the documentation was
voluminous and next to superb. And contrary to popular opinion,
HDOS’s heritage lies with the OS on the DEC Letwin developed
the system on. A further bonus to Heath’s clientele lay a few years
further up in the stack when source code for the system was sold.

All things change, at Heath as well as elsewhere. J.G.L. was, in
turn, “pirated” by a rising software firm named MicroSoft. And
principal HDOS system enhancement was assumed by Gregg A.
Chandler. By this time, Heath had also developed another hard-
ware platform, the H-89, and been acquired by Zenith. Like the
H-8, the '89 retained an 8K monitor at the bottom of memory,
though the ‘8’s seven-segment display and 16-key keypad were
scrapped in favor of a full-screen CRT with keyboard. Indeed, the
’89 was built inside the cabinet of Heath’s most popular terminal
of the time, the H-19.

True CP/M compatibility was also in the offing. For a time,
Lifeboat Associates offered a modified ver. 1.4, ORiGinating
above the ROM monitor, at 2280hex. Though early versions (such
as my own '89) could only boot HDOS, when the F.C.C. man-
dated more stringent control of RFT in 1981, the redesigned *89A
boasted memory remapping for ORG-0 CP/M 2.2. (I was able to
retro-fit my own machine.) But the H-8 did not survive this shake-
out and Heath discontinued production in ’81, though it continued
to sell them from stock for several years. However, it did offer a
replacement CPU board for the machine that duplicated the ‘89’s
780 and memory remapping so it, too, could boot CP/M 2.2 when

The Computer Journal / #43

that was released.

Besides the new platform, HDOS matured during these years,
though not in the way CP/M did over the same period. This was
because of the philosophical differences between the two. The sys-
tem became even more device-independent with the separation of
the floppy disk driver routines from the system core. (I recall that
within a couple years after I bought my “Neanderthal,” I received
three versions of HDOS, 1.5, 1.6, and 2.0.) A good share of the
motivation for this was the immanent release of soft-sector con-
trollers for both the ‘8 and ’89 in 1982. Heretofore, HDOS could
only boot from single-density, ten-hard-sector, single-sided flop-
pies. The addition of soft-sector format expanded capacity from
about 90K to upwards of 760K per 5V floppy, depending on the
number of sides and track density of the drives installed. This addi-
tion also meant that the eight-inch floppy subsystem Heath had
supported for some years could now also produce HDOS system
disks.

But this marked the last revision prepared directly by Heath,
upgrading the system from ver. 1.6 to 2.0. A further update, ex-
plicitly to support a just-released hard disk system (the H-67) was
promised. But Heath now had other irons in the fire, specifically,
development of the H-100 dual-processor (8085/8088) system and
its programmers were shunted away from further HDOS work.

HDOS 3.0 Origins

As I mentioned, Heath promised an update beyond HDOS 2.0.
Indeed, one of the persistent questions at Heath/Zenith-oriented
conferences (HUGCONS), sponsored by Heath Co., Zenith Data
Systems, and the Heath/Zenith Users’ Group (HUG), during the
mid-80’s was, “Where’s HDOS 3.07” Actually, development was
let to a small group of independent contractors, organized by Bob
Ellerton (then manager of HUG), lead by William G. Parrott III
and David T. Carroll, and originally included Dale Wilson. As ini-
tially conceived, it was to boot from all three of Heath/Zenith’s
hardware platforms: the H-8 (with either the original 8080 or new
780 MPU card installed), *89, and ‘100. Besides support for hard
disks, the one significant wrinkle that would separate it from ecar-
lier versions of HDOS (or CP/M, for that matter) was that the
system core would reside at the bottom of memory. This would
require memory remapping on the ‘8 and ’89, as is done when
booting CP/M 2.2, to remove the monitor ROM from active
memory. But it would also provide compatibility with most of the
software written for HDOS 2.0 and earlier since program ORiGin
(at 2280hex) wouldn’t change. Unexpectedly (as I discovered after
getting the system), compatibility extended to many third-party
printer device drivers even though alterations to the PIC (position-
independent code) structure (permitting dynamic positioning of
driver modules in memory) were made.

Development ran into significant problems almost immediately,
though. David Carroll managed to acquire the system source code
on magnetic tape and uploaded it to 8-inch disks, providing it to
Bill Parrott. After this, machine-readable copies of the HDOS 2.0
or earlier source seem to have disappeared. On the bright side, the
command processor (SYSCMD.SYS, comparable to CP/M’s
CCP) wasn’t based directly on HDOS 2.0’s original, but on a dra-
matically improved version developed by Bill and Dave while em-
ployed by D.G. Electronic Development. But with increased use of
early versions of MSDOS on the 16-bit side of the H-100, a ver-
sion for the 8085 was abandoned, leaving CP/M-85 as the only 8-
bit system for that machine. Further, after the team leaders had
designed the system, the agreement with Heath collapsed, so the
project lay dormant for a period. lowever, both Parrott and pro-

The Computer Journal / #43

grammer Richard Musgrave (more on him below) belonged to the
Mission (KS) Users’ Group (MUG) and Musgrave “bugged” Par-
rott into continuing the project with his assistance. Musgrave
wrote me recently that this experience converted him into a sys-
tems programmer! At any rate, development of 3.0 became very
much a part-time, hobbyist affair. One of the few bright spots was
release by Dean Gibson of UltiMeth of an advanced assembler for
HDOS. (This, by the way, is still available from Quikdata, Inc., in
Sheboygan, WI.) When eventually released, the source for HDOS
3.0 was written specifically for this assembler.

But despite difficulties, the upgrade eventually made it into the
users’ hands: in two forms and unexpectedly placed in the public
domain! Release was announced by Bob Ellerton at HUGCON V
in August, *86. It could either be downloaded from HUG’s BBS as
huge ARC'd files (requiring deARCing under MSDOS or CP/M
and transfer to HDOS-compatible media!) or ordered in bootable
form directly from team leader Bill Parrott as a seven-disk set for
$25. This included the system, utilities, BASIC, assembler, and
source for a wide range of device drivers. I took the latter route in
December that year and apparently from its release until Bill left
the team to pursue other interests in mid-'88, some 750 copies
were sold. I have no idea how many downloaded the ARC files
from HUG’s BBS. The only drawback to the release was the
skimpy documentation. It presumed knowledge of HDOS 2.0 and
this created problems for those coming from a CP/M background.

HDOS 2.0 Today

Besides the release of version 3.0, 1986 marked something of a
turning point for Heath’s old, now-discontinued 8-bit systems and
HDOS. For one thing, two newsletters specifically for the H-8 and
’89 made their appearance. The first was Leonard Geisler’s
SEBHC Journal, appearing in August as a monthly. This was fol-
lowed by my friend Hank Lotz with his quarterly, The Staunch 8/
89’r, in November. For another, Hank had asked me to write a
column for him and during the following year, I became increas-
ingly concerned with the status of HDOS 2.0 and the rather evi-
dent decline in HDOS support from both Heath and third-party
software vendors. So several months before Hank and I swapped
places on the newsletter’s “staff” in January, 88, I wrote to Heath,
HUG, and Zenith Data Systems, encouraging them to release
HDOS 2.0’s source and object code into the public domain. (At
this point, I frankly hadn’t given any thought to that voluminous
documentation I mentioned above!)

In September, 87, Heath president William Johnson replied
politely that Heath would consider my proposal. And the matter
rested there for some six months while I acclimated myself to
meeting publishing deadlines (even soft ones). But late in April, I
received a letter from Bob Ellerton (now manager of Consumer
Publications for Heath) stating that the company was placing the
system in the public domain! He also implied that Heath was
searching its archives for further materials and anything discovered
would be placed on HUG’s BBS. Regretiably, that search was in
vain, but all wasn’t lost!

Let’s go back down in the stack for a moment. Recall that T
mentioned (apparently off-handedly) that Heath sold listings of
the HDOS source. A sizable number of people took advantage of
that. A few wrote and sold clones of the system that used less
memory than the original, although they usually could only boot
from Heath’s hard-sector disks. Others enhanced the command
processor (SYSCMD.SYS) to abbreviate the typing and improve
functionality. But of greatest interest for us was the apparent labor
of love that members of the largest local Heath-oriented users’

15

group (the Capitol Heath/Zenith Users’ Group [CHUG], located
in the nation’s capitol) undertook: keying the entire source! The
rest of us owe these unsung, but intrepid, hackers considerable
credit for the vital task they performed. And even though Bob
Ellerton expressed caution over the possibility of assembling that
source with the standard HDOS assembler in his letter releasing
it—he speculated that the UltiMeth assembler would be required
since Letwin and his successors used DEC’s RSTS—one of my

. readers recently wrote that he was able to assemble the system,
using HDOS’s standard assembler, from CHUG’s source code
with but a few minor changes.

So the system was now available. But describing HDOS to new
users is a major problem, whether they have previous experience
with CP/M or MSDOS or are complete novices. Though easy to

"use once you know it and having messages explicitly describing

. errors, HDOS requires more “expression” on the part of the user.
(Hence the popularity of modifications abbreviating commands.)
But the question of documentation was resolved fairly quickly.
And its prompting was by one of my readers, Parks Watson. In
response to his question, was the HDOS documentation also pub-
lic domain, T forwarded his query to Jim Buszkiewicz, Managing
Editor of REMark (the magazine published by HUG) and Jim
replied in June of 1988 that it, indeed, was! Like the prior publica-
tion of the HDOS source, this, too, had some unexpected conse-
quences, which I'll turn to momentarily.

But this release immediately prompted me to arrange for an
easier distribution medium for the manual, particularly to those
acquiring the *89 second-hand but without any operating system. I
contracted with Daniel Jerome, a semi-retired technical writer, to
keyboard and update the whole thing! And the latter was certainly
overdue. Its last such was in 1980, but the system saw further
development through the first few years of the decade, as I re-
marked above, mainly associated with the release of the soft-sector
controller boards. Information about the latter never made it into
the HDOS documentation. Neither did material on the “undocu-
mented” features of the OS, particularly STAND-ALONE mode

" for single-drive systems.

But to summarize, through Heath Co.’s largess, the entire
HDOS 2.0 system (source code, object code, and documentation)
is in the public domain. And they can be had from me. But I could
wish that other manufacturers would be so generous, such as Digi-
tal Research. But I gather that CP/M 2.2 is still a hot seller, par-
ticularly in industrial and military applications.

HDOS 3.0 Today

There is some surprising activity involving the “child” of HDOS
as well. Richard Musgrave (of MIGHTY-SOFT, Kansas City,
MO), the other half of Bill Parrott’s HDOS 3.0 development
team, has continued to enhance the system and is presently pre-
paring ver. 3.10 for release. And the public domain status of the
2.0 documentation has prompted writer Dan Jerome to combine
with Richard in preparing an extensive revision of it specifically for
3.02, the current release, merging it with hefty document that
Richard prepared himself. This package will be available from
Quikdata (Sheboygan, WI) and me in the second quarter of this
year. The revised documentation will run to something like 600
pages when printed from disk.

And William Lindley (Lindley Systems, Woodbridge, VA), one
of the remaining long-time vendors supporting the H-8 and H/Z-
89 on both the HDOS and CP/M sides, has volunteered to pre-
pare camera-ready material for a hardcopy version with Ventura
Publisher on his laser printer-equipped PC system. This combined

16

effort will repair the one major deficiency still present in version
3.0.

HDOS’S Longevity

HDOS's staying power is nothing short of miraculous, consid-
ering the limited manufactured hardware base it was written for.
One of the reasons is certainly the persistence of its users to stay
with not only a known, but a simple, operating system. The same,
of course, holds for today’s many CP/M users. (Some of my sub-
scribers have mentioned that though they must use PC-clones at
work, they prefer the accessibility of the 8-bit system, whether
HDOS or CP/M, at home.) Another is undoubtedly Heath Co.’s
exceptional and enlightened support, even though both hardware
platforms have been out of production for half a decade.

But the main reason is, I think, Letwin’s original design con-
cepts for the system: user friendliness--no obscure error messages
are displayed when there’s a problem--and device independence.
The latter is certainly the more important of the two and means
that when you buy a new peripheral, you need not patch the sys-
tem as is the case with CP/M. You just have to acquire or write a
device driver for it. When the peripheral is used, the driver is
automatically loaded into memory below the system, used accord-
ing to its function, then that memory is reclaimed by the system
for other things.

Given the changes in Microsoft’s MSDOS, beginning with ver-
sion 2.x, Letwin appears to be applying the experience he acquired
developing HDOS to the 16-bit environment. And in that sense,
the heritage of HDOS will survive well beyond the moment when
the last H-89 is retired to the Smithsonian.

Acknowledgment: Although the sources which contributed to
the discussion above were wide-ranging, I would particularly like
to thank Richard Musgrave, co-developer of HDOS 3.0. He
proofed the first draft and contributed significantly to my discus-
sion of the origins of HDOS. e

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don’t notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

The Computer Journal / #43

The Z-System Corner
by Jay Sage

This time my column is going to be quite short. In response to
my requests, a number of authors have submitted some very inter-
esting articles, but there has not been enough space to print them.
I want to make sure that those articles are not delayed further.
One of them is on the superb LSH history shell by Rob Friefeld,
who has contributed quite a number of excellent Z-System pro-
grams (SALIAS, VCOMP, and BCOMP, to name a few). You
should not miss that article.

After working first with the original Z-System history shell
(HSH by Michael Rubenstein) and then with EASE by Paul Pom-
erleau, it occurred to me that it would be even nicer to have a full-
screen history shell. What I envisioned was bringing the full re-
sources of a wordprocessor to bear on the command transcript, so
that commands could be easily viewed, modified, reordered, and
regrouped. If the history file were a standard ASCII file, then one
could massage the file with a standard editor or even prepare ‘his-
tory’ scripts in advance for special purposes.

After seeing the splendid full-screen work Rob Friefeld had
done in his SALIAS (Screen ALIAS editor), I asked him if he
would take on the task of writing such a history shell. He did, and
he has done a splendid job. I would, therefore, like to publicly take
credit for that all-important management skill of asking the right
person to do a job!

Software Update Service

While Echelon was still in business marketing the Z-System,
they offered a very nice product called SUS or Software Update
Service. People who have modems and a nearby Z-Node or RCP/
M system generally do not have much trouble picking up the latest
releases of public-domain Z-System and general CP/M software.
However, for those who do not have modems or for whom the
nearest Z-Node is an expensive long-distance call, obtaining a full
set of Z-System tools or keeping up with new releases is much

Jay Sage has been an avid ZCPR proponent since the very first
version appeared. He is best known as the author of the latest ver-
sions 3.3 and 3.4 of the ZCPR3 command processor and for his
ARUNZ alias processor and ZFILER point-and-shoot shell.

When Echelon announced its plan to set up a network of remote
access compulter systems to support ZCPR3, Jay volunteered imme-
diately. He has been running Z-Node #3 for more than five years
and can be reached there electronically at 617-965-7259 (MABOS
on PC-Pursuit, pw=DDT). He can also be reached by voice at 617-
965-3552 (between 11pm and midnight is a good time to find him at
home) or by mail at 1435 Centre St,, Newton, MA 02159. Jay is now
also the Z-System sysop for the GEnie CP/M Roundtable and can
be contacted as JAY.SAGE via GEnie mail or chatted with live at
the Wednesday real-time conferences (10pm Eastern time).

In real life, Jay is a physicist at MIT, where he tries to invent
devices and circuits that use analog computation to solve problems
in signal, image, and information processing. His recent interests
include artificial neural networks and superconducting electronics.
He can be reached at work via Internet as SAGE
@LL.LLMITEDU.

The Computer Journal / #43

more difficult. The Echelon SUS was designed to solve that prob-
lem by making the material available on diskette by mail. It was a
disk subscription service, and roughly every month subscribers
would get a diskette full of public-domain software.

I am happy to announce that SUS is coming back, thanks to the
urging and energy of Chris McEwen, sysop of the Socrates Z-
Node (#32), in Plainfield, NJ. Chris and Bill Tishey, together with
Sage Microsystems East, will be offering an even more extensive
service than Echelon’s. Bill Tishey, as most of you know, has for
some time been maintaining a complete catalog of Z-System pro-
grams (ZFILESnn.LST) and a compendium of HLP files covering
all of them. At frequent intervals, Bill releases an update LBR
with all the new help files. Now, in addition to that service, Bill will
be putting together diskettes with the software as well as the docu-
mentation.

This means that you will be able to purchase diskettes with the
complete set of Z-System programs and/or subscribe to a monthly
update service. Bill and Chris will be handling most of the diskette
production; SME will handie the orders and bookkeeping and will
produce diskettes in the few formats that Chris and Biil cannot
handle (8" IBM SSSD, NorthStar hard-sector, and Amstrad 3").

We have not yet worked out all the pricing details for all the
options, but by the time you are reading this column, we will have
flyers available with all the information. Just drop me a letter or
postcard, or leave a message for me in any of the ways indicated in
the sidebar to this column, and I will get a flyer to you. To give you
some idea of what we are talking about, a 6-month SUS subscrip-
tion to a US address will probably be $48 (38 per disk) and a year’s
subscription $72 (86 per diskette). As you can see, we are trying to
keep the price very low. We really want all of you to be able to get
and use all these wonderful programs.

Fully Customizing NZCOM

My technical topic for this time will be about designing fully
customized NZCOM Z-Systems. I have always been satisfied with
the systems that can be produced so easily using the MKZCM
(MaKe nZCoM) menu-driven utility, and so I never really delved
into this area very much. About a week or so ago, however, Dave
Goodman brought the problem to me. He has a NorthStar Hori-
zon with an add-on hard disk, and the operating system has a
ROM stuck somewhere in the middle of the address space. That
left some disjoint blocks of free memory, and Dave really wanted
to make use of all the space. I told him my standard answer to that
probiem.

In section 5 (especially subsection 5.2.3) of the NZCOM man-
ual, I point out that the NZCOM system is defined by a descriptor
file and that this file (with type ZCM) is a pure ASCII file that can
be edited with one’s favorite text editor. The manual recommends
that everyone make certain changes so that the descriptor will
properly reflect the user’s hardware environment, such as the disk
drives available and the characteristics of the system’s printer and
terminal.

I did not actually come out and say it explicitly, but there is an
implication that other values in the ZCM file can also be changed.
The truth is, I believe, that I avoided this subject in part because I

17

E606 CBIOS 0080 ENVTYP E3F4 EXPATH 0005 EXPATHS
0014 RCPS 0000 I0P 0000 IOPS DDOO FCP
DF80 Z3NDIR 0023 Z3NDIRS E400 Z3CL 00CB 23CLs
0002 Z3ENVS E200 SHSTK 0004 SHSTKS 0020 SHSIZE
E3D0 EXTFCB E4D0 EXTSTK 0000 QUIET E3FF 2Z3WHL
0010 MAXDRV 001F MAXUSR 0001 DUOK 0000 CRT
0050 COLS 0018 ROWS 0016 LINS FFFF DRVEC
0050 PCOL 0042 PROW 003A PLIN 0001 FORM
0000 SPAR3 0000 SPAR4 0000 SPARS BBOO CCP
€300 DOs 001C DOSsSs D100 BIO 0000 PUBDRV

1 my Televideo 803H computer.

Figure 1: The ZCM descriptor file for the normal NZCOM system I use on

version that fixes the 803’s faux pas of clobbering

OGN the index registers during BIOS calls and imple-
E280 Z3ENV ments a check of the Z-System drive vector for
E380 Z3MSG BIOS disk-select calls as described in a previous
888; :gﬁm column. It also has room for a 20-record RCP,
0000 SPARL which allows me to use a full-featured RCP with
gg‘l)g 22;’;2 Carson Wilson and Rob Friefeld’s resident history

shell, CLED (see RCPZRL11.LBR on Z-Nodes).

I decided to be cautious, especially after one of
my new system designs caused the system to hang,
and I made a series of systems, each different

0000 PUBUSR

E606 CBIOS 0080 ENVTYP E3F4 EXPATH 0005 EXPATHS
0014 RCPS 0000 IOP 0000 IOPS D480 FCP
D200 23NDIR 0023 Z3NDIRS E400 2Z3CL 00FB Z3CLS
0002 Z3ENVS E100 SHSTK 0004 SHSTKS 0020 SHSIZE
,E2D0 EXTFCB E300 EXTSTK 0000 QUIET E2FF Z3WHL
0010 MAXDRV 001F MAXUSR 0001 DUOK 0000 CRT
0050 COLs 0018 ROWS 0016 LINS 000F DRVEC
0050 PCOL 0042 PROW 003A PLIN 0001 FORM
0000 SPAR3 0000 SPAR4 0000 SPARS BAOO CCP
C200 DOS 001C DOSS D000 BIO 0000 PUBDRV

editing the 2ZCM file.

Figure 2: A radically reconfigured NZCOM system produced by

from the previous one in a relatively small way. 1

oos R am not going to show you all the steps along the
E180 Z3ENV way but will go right to the most radically different
E280 Z3MSG version. See Figure 2. If you look carefully, I think
0004 SPEED | you will find that only the command line buffer
0000 SPAR1 (Z3CL) is still in the same place as it was in the
gggg gg:? original system (but it is bigger now).

Perhaps you are wondering why I didn’t make
the most dramatic demonstration possible by
changing absolutely every address (and perhaps
size, too). Well, there was an extra constraint that

0000 PUBUSR

manually

was not entirely sure which values could and which values could
not be changed. My suggestion to Dave Goodman was that he
experiment with designing a custom memory map for his system,
edit the values into the ZCM file, and see what happened when he
“tried to load it.

Dave’s report back to me, now confirmed by my own experi-
ments on my Televideo 803H, indicated that ALL values can be
changed. The only requirement is that the values provide a mem-
ory map with no modules overlapping. When you use MKZCM to
design the system, it takes over the responsibility for generating a
valid memory map; if you do the design yourself, you better be
careful.

A Helpful Utility

This suggests a very nice utility program that some thoughtful
soul could contribute to the community. This utility (let’s call it
ZMAP) might do a number of helpful things. First, it could dis-
‘play, perhaps in some graphical or semi-graphical way, the mem-
ory map of a Z-System, the one actually running or one specified
in the form of a ZCM or ENV file (and maybe even the Z3PLUS
descriptor file of type Z3P). Present utilities, such as SHOW
(ZSHOW) and Z3LOGC, list the module addresses in a fixed order,
not in order of increasing memory address. Thus they are not very
helpful in determining if there are gaps or overlaps in the map.
Ideally, ZMAP would flag any such defects or potential defects in
the map so that they could be corrected before they cause harm.

The final item on my wish list—and this might better be imple-
mented in a second, independent program (ZDESIGN per-
haps)— would be a general Z-System designer, along the lines of
MEKZCM but without its restrictions. One would be able to specify
the order of all the modules in memory and their sizes. Given the
highest memory address available, the program would then figure
out and display the memory map. One should be able easily to
alter the order of the modules, and one should be able to override
specific addresses to create gaps if necessary (but not to force
overlaps). Once the desired system has been designed, the pro-
gram should write out a ZCM or ENY file for it. Such a program
is a good candidate for implementation with a high level language
such as BDS Z or Turbo Pascal. And it sure would have helped
me with the experiments that I am about to describe (several mis-
takes resulted in crashes).

My Experiments
Figure 1 shows a printout of the standard NZCOM.ZCM file
on my Televideo 803H. It has already been customized in several
ways using MKZCM. First, it allocates a 4-record VBIOS. T use a

18

1 was exploring with this system. I am running

ZDDOS, and I have specified that the clock
driver be loaded into the so-called user buffer. I have even applied
the NZCOM patch (NZCOMPAT.HEX) that comes with the
ZSDOS/ZDDOS package so that when new system configurations
are loaded, the clock driver will be reconnected to the DOS auto-
matically without the need for running LDTIM again.

If you know a lot about Z-System, you will know that there is
no such thing as a user buffer! The user buffer is a special creature
of NZCOM,; it is not defined in the Z-System environment de-
scriptor (or —look closely —in the ZCM file). IHow, then, does one
determine where this special gap in the memory map of an
NZCOM system is located? That is exactly what I wondered my-
self. I could have called ZDOS authors Cam Cotrill or Hal Bower
and asked them how they infer its location, but I decided to experi-
ment instead. What I found after various trials and errors was that
the NZCOM patch scemed to be happy and able to find the
LDTIM clock module so long as the command line buffer stayed
in the same place. Apparently, the assumption is made that the
user buffer is the memory from 100H above the start of the com-
mand line buffer up to the real CBIOS (E400 to ESFF in my
case).

1 did not perform exhaustive tests of this hypothesis. Let us just
say that it is not terribly prudent to try to make use of a ‘user
buffer’ with a fully customized system. It would be wiser to design
the system with a gap below the CBIOS for the clock driver and to
create a version of LDTIM with an explicit load address. The
NZCOMPAT patch should be omitted from NZCOM if such cus-
tom systems are going to be used.

A Few Bugs

There were a few bugs in NZCOM that surfaced during this
testing that suggest that NZCOM.COM was not quite designed to
work rigorously and to handle the most general system loading
situations. Sometimes I found that NDR modules became empty,
and the command search path was rarcly preserved with these
systems. Code-containing modules, such as the FCP, RCP, DOS,
and so on, cannot be moved from one address to another. If their
starting address changes, the code must be rcloaded fresh from
the ZRL file. On the other hand, modules that contain data, such
as the NDR, shell stack, path, message buffer, and so on, can and
should be moved to any new address, so long as there is room for
the old contents in the new home. NZCOM sometimes failed to
do this. Maybe now that I have uncovered these small problems, 1
can pass the information on to Joe Wright, and he can fix up the
code to handle these situations. @

The Computer Journal / #43

Graphics Programming With C

On the IBM PC
by Clem Pepper

As ancient civilizations rose and fell the newest built on the
ruins of their predecessors. By digging down through the layers
much has been learned of the progress made through the ages. In
many respects an exploration of the IBM PC bears a strong resem-
blance to an archaeological dig.

My latest in this series dealt with screen character attributes.
This in the context of the TEXT mode of operation. When we
screw up our courage and venture into the GRAPHICS mode we
find ourselves in an entirely new world. It is as though we have two
more or less unrelated computers sharing a single environment.
Schizophrenic just may be the keyword in defining the relationship
of the two modes. Dr. Jekyll and Mr. Hyde, if you will. Our com-
puter can be in the text mode or the graphic, but not in both at the
same time.

Video Monitors and Adapters
A monitor screen of some kind, CRT or liquid crystal, mono-

chrome or in color, allows us to view the computer’s output. IBM
and compatible computers require a video adapter to translate
computer instructions into a format capable of controlling the
monitor. The adapter is a printed circuit card containing the video
control logic. The card also contains the video memory.

In the beginning there was the Monochrome Adapter, the
MDA. The MDA is limited to text only; no graphics. The Hercu-
les Graphic Adapter (HGA) displays graphics in monochrome
only with a resolution of 720 by 348 pixels.

To meet the demand for color IBM came up with the Color
Graphics Adapter (CGA). In its black and white (2-color) mode
this adapter has a resolution of 640 by 200 pixels. Its color resolu-
tion is 320 by 200 pixels. It is subject to severe limitations on
available colors. In its graphic mode, as distinct from text, two
color palettes are available. (Turbo C has somehow contrived to
provided four palettes.) Only one can be in use at any given time.
A palette provides only three colors. The screen background color

MS DOS CGA Graphics Display Options:

chrome only.

available color palettes.

Palette Two:

Palette One:
color 1 - CYAN
color 2 - MAGNETA
color 3 - WHITE

color 1 - RED
color 2 - GREEN
color 3 - BROWN

Available background colors:

0 - BLACK

4 - RED

8 - DARKGRAY
12 - LIGHTRED

1 - BLUE 2 - GREEN
5 - MAGNETA 6 - BROWN
9 - LIGHTBLUE 10 - LIGHTGREEN

13 - LIGHTMAGNETA 14 - YELLOW

Two possible resolutions: 300 x 200 pixels, 640 x 200. 640 x 200 in mono-

In 320 x 200 each pixel may be one of four colors. Can be one of 16
background colors or one of three other colors selectable from one of two

3 - CYAN

7 - LIGHTGRAY
11 - LIGHTCYAN
15 - WHITE

Turbo C Version 2.0 graphics Iibra;y CGA palettes for use with setcolor()

Palette Constant assigned to color number (pixel value)
Number 1 2 3

0 LIGHTGREEN LIGHTRED YELLOW

1 LIGHTCYAN LTMAGNETA WHITE

2 GREEN RED BROWN

3 CYAN MAGNETA LIGHTGRAY

selects the color white.

Colors must be in upper case when used with setcolor().

In use pass the color number or name. In name, prefix the color with
CGA_. Example: in CGAC1 mode, setcolor(3) or setcolor(CGA_WHITE)

Background colors and color numbers are as shown with MS DOS above.

Table 1. Palette and color options available in the CGA graphics mode.

Mode

Constant Interpretation Adapter
CGACO 320 x 200 palette 0, l-page CGA
CGAC1 320 x 200 palette 1, l-page CGA
CGAC2 320 x 200 palette 2, l-page CGA
CGAC3 320 x 200 palette 3, 1l-page CGA
CGAHI 640 x 200 two-color, l-page CGA
EGALO 640 x 200 16-color, 4-pages EGA
EGAHI 640 x 350 16-color, 2-pages EGA
EGA64LO 640 x 200 l6-color, l-page EGA
EGA64HI 640 x 350 4-color, 1-page EGA
EGAMONOHI 640 x 350 64K on card l-page EGA

256K video memory, 4-pages

HERCMONOHI 720 x 348 2-pages HERCULES

VGALO 640 x 200 16-color, 4~pages VGA
VGAMED 640 x 350 16-color, 2-pages VGA
VGAHI 640 x 480 16-color, l-page VGA

Table 2. Turbo C Version 2.0 graphics library video
modes.

Turbo C Version 2.0 EGA/VGA Color Table

Name Value
EGA_BLACK 0
EGA_BLUE 1
EGA_GREEN 2
EGA_CYAN 3
EGA_RED 4
EGA_MAGNETA 5
EGA_LIGHTGRAY 7
EGA_BROWN 20
EGA_DARKGRAY 56
EGA_LIGHTBLUE 57
EGA_LIGHTGREEN 58
EGA_LIGHTCYAN 59
EGA_LIGHTRED 60
EGA_LIGHTMAGNETA 61
EGA_YELLOW 62
EGA_WHITE 63

Table 3. Turbo C Version 2.0 graphics library color
table for EGA/VGA.

The Computer Journal / #43

19

closegraph shuts down the graphics system

detectgraph checks the hardware and determines which
graphics driver to use; recommends a mode

graphdefaults ... resets all graphics system variable to
their default settings

_graphfreemem ... deallocates graphics memory; hook for
defining your own routine

_graphgetmem allocates graphics memory; hook for
defining your own routine

getgraphmode returns the current graphics mode

getmoderange returns lowest and highest valid modes for
specified driver

initgraph initializes the graphice system and puts
the hardware into graphics mode

installuserdriver installs a vendor-added device driver to
the BGI device driver table

installuser font loads a stroked font not known to the
graphics routines

registerbgidriver registers a linked-in or user-loaded driver
file for inclusion at link time

restorecrtmode .. restores the original (pre-initgraph)
screen mode

setgraphbufsize . specifies size of the internal graphics
buffer

setgraphmode selects the specified graphics mode, clears
the screen, and restores all defaults

Table 4. A summary of the graphic library functions for graph-
ics system control functions

Screen manipulation functions:

cleardevice clears the screen (active page)
setactivepage ... sets the active page for graphics output
setvisualpage ... sets the visual graphics page number

Viewport manipulation functions:

clearviewpoint .. clears the current viewport

getviewsettings . returns information about the current
viewport

setviewport sets the current viewport for graphics
output

Image manipulation functions:

getimage saves a bit image of the specified region
to memory

imagesize returns the number of bytes required to
store a rectangular region of the screen

putimage puts a previously saved bit image on the
screen

Pixel manipulation functions:
getpixel gets the pixel color at (x,y)
putpixel plots a pixel at (x,y)

Table 6. A summary of the graphic library functions for image
manipulation.

Drawing functions:

ArC sseeec.s...... draws a circular arc

circle ¢c.cv..... draws a circle N

drawpoly draws the outline of a polygon

ellipse draws an elliptical arc

getarccoords returns the coordinates of the last call to
arc or ellipse

getaspectratio .. returns aspect ratioc of the current
graphics mode

getlinesettings.. returns the current, line pattern, and line
thickness

1line .ceeeenacecn . draws a line from (x0,y0) to (x1,yl)

linerel draws a line to a point some relative
distance from the current position (CP)

lineto draws a line from the current position {CP)

to (x,y)

moveto moves the current position (CP) to (x,y)

moverel moves the current position (CP) a relative
distance

rectangle draws a rectangle

setaspectratio .. changes the default aspect ratio-correction
factor

setlinestyle sets the current line width and style

Filling functions:

bar ...eessesvv.. draws and fills a bar

bar3d draws and fills a 3-D bar

fillellipse draws and fills an ellipse

fillpoly draws and fills a polygon

floodfill flood-fills a bounded region

getfillpattern .. returns the user defined fill pattern

getfillsettings . returns information on the current fill
pattern and color

pieslice draws and fills a pie slice

8ector draws and fills an elliptical pie slice

setfillpattern .. sets the fill pattern and fill color

Table 5. A summary of the graphics library functions for draw-
ing and filling.

Graphics mode text output functions:

gettextsettings . returns the current text font, direction,
size, and justification

outtext sends a string to the screen at the current
position(CP)

outtextxy sends a string to the screen at the
specified position

registerbgifont . registers a linked in or user-loaded font

settextjustify .. sets text justification values used by
outtext and outtextxy
setextstyle sets the current text font, style and

character magnification factor
setusercharsize . setswidth and height ratios for stroked

fonts
textheight returns the height of a string in pixels
textwidth returns the width of a string in pixels

Table 7. A summary of the graphic library functions for graph-
ics mode text output.

is independent of the palette colors. CGA color options are de-
scribed in Table 1.

The CGA was followed by the EGA for higher resolution and a
wider range of colors. EGA resolution is 640 by 350 pixels with up
to sixteen colors. The latest additions to the list are the MCGA
and VGA adapters. These were initially developed by IBM for
their PS/2 systems. These two adapters are analog in contrast to
the digital ones used by the preceding cards. An analog monitor is
required with these. Tables 2 and 3 describe Turbo C version 2.0
color options for the various adapters in use.

All the video adapters are “memory mapped.” Each picture
element (pixel) on the screen corresponds to one or more bits of
the video memory on the adapter card. Although the memory is

20

on the adapter card it is addressable in the same manner as mem-
ory elsewhere in our computer. This is good in that it allows our
programs to produce screen displays by sending instructions di-
rectly to the adapter RAM.

Tables 4 to 6 include function definitions for pixel color control.
Understanding the color functions requires some awareness of
how colors are produced on the graphics screen. This screen con-
sists of an array of pixels cach producing a single colored dot via an
index into a color table (the palette). The palette entry defines the
exact color for that pixel. Use of the palette introduces a number
of restrictions in that only a subset of colors can be made available
at a given time. For the CGA in its low resolution (350 by 200
pixels) we can choose four colors from a total of 16 supported by
the hardware; for the EGA with its higher resolution the palette
provides for 16 out of the 64 available.

In graphic modes the screen pixels are organized in a matrix
having an x-y coordinate scheme. The number of pixels, the colors
available and the screen aspect ratio (ratio of horizontal to vertical
pixels) varies with the adapter in use. Depending on the compiler
and/or graphics library we are using the upper left corner of the
screen may or may not be 0,0. In this respect the Turbo C graphics
use the upper left corner as origin. This is true of the screen as a
whole and viewports, to be described later. The library provided
with the book Graphics Programming In C by Roger T. Stevens
employs offsets in some of its plotting routines.

The Computer Journal / #43

The ROM BIOS

One remaining component is the ROM BIOS, discussed in the
previous article. The BIOS provides very limited graphics support.
And no support whatever for the Hercules adapter. Use of the
interrupt 10H routines do ensure portability, but with a severe
penalty in performance. For fast screen drawing and animation
direct writing to the video RAM is often preferable to portability.

Getting Started

As with so many of life’s experiences there is an initial barrier
arising from the unknown that may cause some of us to put off
that first step into graphics programming. With graphics we are in
new territory with respect to screen factors, memory use, and sim-
ply knowing how to utilize the computer power available to us.

An early obstacle to my own experience was how to keep track
of objects on the screen. There are but a mere 70,000 pixels avail-
* able with the CGA in its four color mode. A tracking scheme of
some sort became my first priority. The solution was to draw up a
screen map with a point for each pixel. Figure 1 shows the upper
left portion of the map. Through use of the map we can speed up
our designs considerably. And ease the task of placing our graphic
objects on the screen.

In use I lay tracing paper over the grid and sketch out the
object to be created. Figure 2 illustrates the technique with the
design of a fighter aircraft. Listing 3 translates the design into a
graphics display. A full scale grid can be made by photocopying the
figure repeatedly and taping the segments to obtain a complete
screen layout.

—

10

40_.

Figure 1. A portion of the screen grid having a one pixel resolution.

TURBO C Graphics

It is unfortunate that the standardization existent with the text
mode is not true for graphics. So I am compelled to use what I
have available in a manner that hopefully can be related to other
libraries in use by readers. From what I have scen the graphic
features are themselves close to universal, but function names and
how to apply them may differ. With this as a basis it should not be
too difficult to apply the examples given here to compilers having
similar graphic capabilities.

Version 1.0 did not provide for graphics in its library functions.

The Computer Journal / #43

S
e ¢
m
X £
o/
t P
Line From To Line From To
Fuselage: Horizontal Stabilzer:
a 8,23 11,23 np 0,14 0,36
ag 8,23 8,27 q 0,36 7,27
b 11,22 21,22 qo 7,27 7,23
¢ 21,21 40,21 o 7,23 0,14
d 40,22 44,22
e 44,23 48,23
£ 48,24 50,24 Vertical Stabilizer
g 8,27 11,27 R 0,25 12,25
h 11,28 21,28
i 21,29 40,29 Wings:
3 40,28 44,28 r 21,21 21,0
k 44,27 48,27 s 21,0 39,20
1 48,26 50,26 v 21,20 39,20
m 50,24 50,26 t 21,29 21,50
u 21,50 40,29
Cockpit: w 21,30 39,30
cl 30,23 36,23
c2 29,24 37,24
c3 28,25 38,25
c4 29,26 37,26
c5 28,27 36,27

Figure 2. Construction data for the aircraft of Listing 3.

Version 1.5 does. These were modified considerably for version
2.0. The book by Stevens was written using version 1.0. and
checked with version 1.5 according to the author. The demo on
the disk provided with the book and programs I have written
based on its routines run on my version 2.0. Because of differences
in coordinate schemes and the powerful graphics routines now
available in version 2.0 T am presently using only the TURBO
graphics. If you purchase the Stevens book be sure to obtain the
disk also as it contains library functions for the CGA, EGA, VGA
and Hercules adapters. Overall the book is an excellent source,
but it does require some effort to use as Stevens was strong in
providing good routines but a bit short at times in describing their
application. I found the source code for the demo program, which
is included in the book, a valuable aid in clarifying several routines
with which I had problems.

The book I make extensive use of with version 2.0 is The Waite
Group’s Turbo C Bible by Nabajyoti Barkakati. Where the
Borland Reference Guide lists the library functions alphabeticaily,
this book is organized by functions. Four chapters are devoted to
graphics: 17, 18, 19, and 20. Chapter 17 covers graphics modes,
coordinates, and attributes. 18 describes routines for drawing and

21

[o]
a
< b c
{e__o’___""‘“'—___
9ﬁ —_—
“ ‘J/o

20

planning
sketch

viewport
positioning

Line Width From To Color
a 1 9,0 15,0 red
b 1 1,2 7,2 brown
g c 3 7,2 17,2 red
d 1 9,4 15,4 red
' e 1 5,5 19,5 green
£ 1 4,6 19,6 green
g 1 5,7 19,7 green
h 1 7,8 18,8 green
i 1 7,9 17,9 green

Figure 3. Construction detail and coordinates for the tank
object of listing 5. Sketch at the left translates into
parallel lines for screen display.

animation. 19 shows how to combine graphics and text. 20 delves
" deeper into text routines.

A Brief Tour of the Turbo C Graphics Library

There is but a single graphics library. Functions are prototyped
in the header file GRAPHICS.H which must always be included.
In contrast to the text library the graphics library is not read rou-

_tinely by the compiler. Instead it must be explicitly requested. To
use the graphics functions with the Integrated Environment
(TC.EXE) toggle Options/Linker/Graphics to On. With the com-
mand line (TCC.EXE) follow the program name with
GRAPHICS.LIB. That is, TCC MYPROG GRAPHICS.LIB.
The graphic routines all use far pointers, because of this graphics
are not supported in the TINY memory model.

" What we look for in the library are functions to ease our task of
creating graphic objects for screen drawing and animation. Tables
4 to 7 summarize the functions provided in the Turbo C Version
2.0 graphics library.

The tables are organized by the nature of the functions. Table
4 lists graphics control functions. These include functions to initi-
ate the graphics system, provide for screen and hardware require-
ments while in the graphics mode and return to the text mode.
This table, and those following, are from the Turbo C User’s
"Guide.

Table 5 is a summary of routines for drawing and filling. These
include arcs, bars, circles, ellipses, lines, rectangles and the like.
Functions for cursor positioning, moving, and connecting points
are also given.

Table 6 includes functions for image manipulation on the
screen. These include clearing the screen, setting up active pages,
creating and clearing viewports, and saving and restoring images
from memory.

Table 7 lists functions useful for combining text with graphics.
The library includes four “stroked” font files: GOTH.CHR,
LITT.CHR, SANS.CHR, and TRIP.CHR. A default 8 by 8 pixel
font is built into the graphics system. The .CHR fonts are linked in
after first converting them to .OBIJ files with the BGIOBJ utility.
Both horizontal and vertical text are supported. The default is
horizontal. If we wish to create special fonts they will have to be
called out by means of our own devising, such as elements of an
array.

22

Example Programs

Four example programs are provided. The purpose of these is
to identify some essential procedures for working in the graphics
mode as well as to illustrate the use of several graphics features for
screen drawing, filling, and animation.

Listing 1 (heading.c) is a heading common to all the programs.
Note that main() is included. The graphic functions shown enable
the graphic driver appropriate to your adapter (graphdriver), se-
lect the color palette (graphmode), and enable testing for errors
arising from misuse of a graphics function in your program (er-
rorcode). For convenience the call to set the background color to
blue is also included. The background can be any color permitted
for the adapter in use.

initgraph(&graphdriver, &graphmode, “your C location”); ini-
tializes the graphic system. My C compiler files are in directory
E:\BTC20. (The double \\ is required whenever a \ is employed in
a C string.) As shown the system is CGA. If your system is not
CGA this should be changed. Graphdriver may also be simply set
equal to DETECT. The graphics system will then detect the kind
of hardware in your system and properly initialize it. This feature is
valuable for programs likely to be run on more than one adapter

These functions define the rectangle size, border line style
and
border color:

rectangle(int left, int top, int right, int bottom);
setlinestyle(int linestyle, unsigned upattern, int
thickness);
setcolor({int color);

These functions define the interior fill style
and fill color

setfillstyle(int pattern, int color);
floodfill(int x, int y, int border);

Line Pattern Availability:

Style Value Description

SOLID_LIRE 0 solid line

DOTTED_LINE 1 Dotted line

CENTER_LINE 2 Centered line (alternating dash,
dots)

DASHED LINE 3 Dashed line

USERBIT_LINE 4 User defines

Line Width Availability:

width Value Description
NORM_WIDTH 1 Normal line, 1 pixel wide
THICK_WIDTH 3 Thick line, 3 pixels wide

Fill Style Availability:

style Value Description

EMPTY FILL 0 £ill with background color
SOLID FILL 1 solid fill

LINE FILL 2 £i11 with —---

LTSLASH FILL 3 fill with ///

SLASH_FILL 4 £ill with ///, thick lines
BKSLASH_FILL 5 £i11 with \\\, thick lines
LTBKSLASH_FILL 6 £ill with \\\

HATCH_FILL 7 light hatch fill
XHATCH_FILL 8 heavy cross-hatch fill
INTERLEAVE_FILL 9 interleaving line fill
WIDE DOT FILL 10 widely spaced dot fill
CLOSE_DOT_FILL 11 closely spaced dot £ill
USER_FILL 12 user defined fill pattern

Figure 4. Line style availablity and coloring in Turbo C
Version 2.0 graphics.

The Computer Journal / #43

type.
The integer graphmode selects the palette to
be used. This cannot be changed later in the pro-

Screen and viewport interior coordinates are both referenced from their upper
left corners as seen in the sketch.

These functions relate to screen system factors: gram. The first example program, Listing 2,
initgraph(int far *graphdriver, int far *graphmode, (rect.c) uses the rectangle drawing function to il-
char far *pathtodriver); lustrate color selection and control for the colors
setaspectratio(int xasp, int yasp); , available in a given palette. The listing shows pal-

setbkcolor{int color);
cleardevice(void);
closegraph(void);

ette 1; to view the other colors available change
the palette number in your source code and re-
compile the program.

g The program draws and fills four rectangles
with distinctive border and fill colors. The code
for the first rectangle is:

- /* **x 1st rectangle(20,20,300,50) ** %/

. . . setlinestyle(0,0,3);
These functions relate to viewport factors: setcolor(l); /* color 1 border */

(setviewport coordinates relate to the full screen.) rectangle(20,20,300,50);
g setviewport(int left, int top, int right, int bottom, int clip);

i id) - /* ** floodfill rectangle *+ */
i clearviewport(void); setfillstyle(SOLID_FILL,2); /* color 2 fill */

0 floodfill(24,24,1);

0

The rectangle coordinates are screen pixels
20,20 for the upper left corner and 300,50 for the
lower right corner. The line thickness is 3 pixels.
The border color is value 1 of whichever palette
is selected. Line patterns and thickness options
are shown in Figure 4.

It is essential when using floodfill that there

be no breaks anywhere in the figure’s perimeter.
This applies to any kind of shape you fill. A gap
Multiple viewports with differing objects can be maintained on the screen. of but a single pixel will allow the color to “leak
out” over the entire screen background. A solid
fill is given in the program; other fill options are
shown in Figure 4. The leading two numbers in
floodfill(24,24,1); are pixel x,y coordinates at
which the filling is to begin. These must be inside
the border, anywhere you choose so long as it
/v HEADING.C does not lie on the border. The third valu; is the color number for
++ Include this listing with each of the example programs. the border. The border can be any color, including the that for the
** Note that this listing includes main() { fill.
o The purpose of getch() in the programs is to hold the graphics
screen for viewing until a key is pressed. Any graphics program we
write must employ logic of some kind (getch() is impractical in a
screen action game) to return to the text mode.

Figure 5. Screen and viewport functions in Turbo C Version 2.0 graphics.

#include <stdio.h>
#include <graphics.h>

/* == Begin program == */ Listing 3 illustrates drawing a figure of your own design within

main() a viewport. The object is the aircraft of Figure 2. It pays to lay out

(. . . ° .y .

int graphdriver = CGA; /* graphics driver .y the line coordinates as shown prior to writing code. This holds
= ’ - . -

int graphmode = 1; /+ specify 0, 1, 2, or 3 */ even for simpler objects such as the tank of Figure 3.

/* ** graphmode cannot be changed later in a program ** */ A viewport is to graphics what a window is to text. We can show
int errorcode; /* graphics error code ¥/ a border around the viewport but do not have to. This example
L } does not.
initgraph(&graphdriver, &graphmode, ‘‘e:\\btc20’’); . i L.

/* %+ replace ‘‘e:\\btc20’’ with your directory location *+ Note the use of thrce drawing func_tlons for positioning the
*/ aircraft: moveto(x,y), lineto(x,y), and linerel(x,y). The two end
errorcode = (graphresult()); /* get result code */ points are defined in move(x,y) and lineto(x,y); linerel(x,y) is the

, , next endpoint relative to the coordinates given in the previous

/* ** graphics error function routine call ** */ "HC[O(X

if (errorcode l= grok) /* always check for error */ ; ’Y)' . . .
{ Figure 5 describes the screen coordinates and functions for
printf(’‘Graphics error: creating and using viewports. Note that a viewport has its own
¥s\n’’, grapherrormsg(errorcode)); origin, 0,0, at its upper left corner. The function setviewport() po-
}e“t(s sitions the viewport with respect to the full screen coordinates at
its upper left corner, 0,0. So we position the viewport relative to

/* ** call to set background color ** */ the overall screen but construct our graphics within the port to its

setbkcolor (BLUE) ; own coordinates regardless of where the port will be positioned. I

have found this confusing, which is my reason for the emphasis.
Listing 1. Heading to b 4 with th N The “clip” digit in the function call will terminate any line within
isting 1. Heading to be used wi e example programs. . . e .

Change the graphmode value to match the program the viewport at 1t§ ‘borders ifits valu.e is other than zero.

in use. We can position the same viewport at multiple locations
throughout the screen. We can also create and display more than

The Computer Journal / #43 23

/* RECT1.C

** Example for floodfilling with the four palettes.
** using the TURBO C Ver. 2.0 library routines.

*/

/* ** 1st rectangle(20,20,300,50) ** */
setlinestyle(0,0,3);
setcolor(1l); /* color 1 border */
rectangle(20,20,300,50);

. /¥ *#* floodfill rectangle *% */
setfillstyle(SOLID FILL,2); /* color 2 f£ill */
floodfill(24,24,1);

/* ** 2nd rectangle(20,53,300,80) ** */
setlinestyle(0,0,3);
setcolor(2); /* color 2 border */
. rectangle(20,53,300,80);

v /* ** floodfill rectangle ** */
setfillstyle(SOLID _FILL,1); /* color 1 fill */
floodfill(24,56,2);

/* ** 3rd rectangle(20,83,300,110) ** */
setlinestyle(0,0,3);
setcolor(3); /* color 3 border */
rectangle(20,83,300,110);

/* ** floodfill rectangle *» */
setfillstyle(SOLID FILL,2); /* color 2 £ill */
floodfill(24,86,3);

/* ** 4th rectangle(20,113,300,140) ** */
setlinestyle(0,0,3);
setcolor(2); /* color 2 border */
rectangle(20,113,300,140);

/* ** floodfill rectangle ** */
setfillstyle(SOLID_FILL,3); /* color 3 fill */
floodfill(24,116,2);

getch();
closegraph();

Llisting 2. Illustrating the four color palettes availible
with Turbo C version 2.0.

/* PLANE.C
** A drawing program using viewports.
** Using the TURBO C Ver. 2.0 library routines.

/* graphmode = 2 this program for red aircraft +/
/* given in heading.c */

/* ** define viewport ** +*/
setviewport(0,0,50,50,1);

/* ** draw fuselage as linked line segments ** */
setlinestyle(0,0,1); /* set style and width */
setcolor(3); /* brown border */
moveto(8,23); /* start segment a */
lineto(11,23);
moveto(11,22); /* start segment b */
lineto(21,22);
moveto(21,21); /* start segment c */
lineto(40,21};
moveto(40,22); /* start segment d */
lineto(44,22);
moveto(44,23);
lineto(48,23);
moveto(48,24); /* start segment f */
lineto(50,24);
moveto(8,27); /* start segment g */
lineto(11,27);
moveto(11,28); /* start segment h */
lineto(21,28);

/* start segment e */

moveto(21,29); /* start segment i */
lineto(40,29);
moveto(40,28); /* start segment j */
lineto(44,28);
moveto(44,27); /* start segment k */
lineto(48,27);
moveto(48,26); /* start segment 1 */
lineto(50,26);
moveto(50,24); /* start segment m */
linet6(50,26);
moveto(8,23);
lineto(8,27);
setfillstyle(SOLID FILL,2); /* red */
floodfill(14,25,3);

/* start segment ag */

/* ** draw cockpit as five line cluster ** */
/* ** golid line, 1 pixel thick ** */
setcolor(l); /* green */
moveto(30,23);
lineto(36,23);
moveto(29,24);
lineto(37,24);
moveto(28,25);
lineto(38,25);
moveto(29,26);
lineto(37,26);
moveto(30,27);
lineto{36,27);

/* ** ocutline the upper and lower wings ** ¥/
setcolor(l); /* green */
moveto(21,21); /* start segment r */
lineto(21,0); /* start segment s */
linerel(19,21);
moveto(39,20); /* start segment v */
lineto(21,20);
moveto(21,29); /* start segment t */
lineto(21,50);/* start segment u */
linerel(19,-21);
moveto(39,30); /* start segment w */
lineto(21,30);
setfillstyle(SOLID_FILL,2); /* red */
floodfill(24,10,1);
floodfill(24,40,1);

/* ** outline the upper and lower tail fins ¥« w/
setlinestyle(0,0,1);
moveto(0,14); /* start segment np */
lineto(0,36);
linerel(7,-10); /% draw segment q */

moveto(7,27); /* start segment go */
lineto(7,23);
moveto(7,23); /* start segment o */

lineto(0,14);
setfillstyle(SOLID FILL,2); /* red */
floodfill(2,20,1);

/* ** draw vertical fin as 3-pixel line ** +/
setlinestyle(0,0,1); /* still green */
moveto(0,25);
lineto(12,25);

getch();
closegraph();
}
Listing 3. The aircraft of Figure 2.
/* VIEWPORT.C
** Multiple viewport example with two objects
** uging the TURBO C Ver. 2.0 library routines.
*/
/* graphmode = 2 this program */
/* given in heading.c */

/* ** hegin viewport repeat ** */
/* ** define viewport *+* */
while(i--) {

24

The Computer Journal / #43

setviewport(left col,top,rite col,bottom,1);
draw_poly();
left col += 10; top += 10;
rite_col += 10; bottom += 10;
setviewport(left col,top,rite col,bottom,1);
draw_cire();
left_col += 10; top += 10;
rite col += 10; bottom += 10;
}
getch();
closegraph();

11}

/* == draw and fill rhombus == ¥/
draw_poly()

{
int rhombus(} = { 0,0, 10,0, 7,8, 3,8, };

/* ** draw and fill the rhombus *¥ */
setlinestyle(0,0,1);
setcolor(2); /* red border */
setfillstyle(SOLID FILL,2); /* red fill */
fillpoly(sizeof (rhombus)/(2*sizecf(int)), rhombus);
}

/* == draw and £ill circle == ¥/
draw_circ()
{

int x =5, y=5, r = 4;

/* ** draw and fill the circle ** */
setcolor(3); /* brown border */
circle(x,y,r);
setfillstyle(SOLID FILL,1);
floodfill(5,5,3);

/* green f£ill */

Listing 4. A program illustrating multiple viewports.

/* TANK.C

** Left directed stick line tank figure.

** using the TURBO C Ver. 2.0 library routines.
*/

/* graphmode = 0 this program */
/* given in heading.c */

/* ** begin animation ** */
/* ** define viewport *¥ */
while(i--) {
setviewport(left col,189,rite col,199,1);
draw_tank();
delay(20); clearviewport();
left col -= 5; rite_col -=5;
}
draw_tank();
getch();
closegraph();
}

/* == draw tank as sequence of horiz lines == */
draw_tank()
{

setlinestyle(0,0,1);
setcolor(2);
moveto(9,0);

/* solid line, one pixel wide ¥/
/* tank top is red */
lineto(15,0); /* segment a */
setcolor(3); /* tank gun is brown */
moveto(1,2); lineto(7,2); /* segment b */
setlinestyle(0,0,3); /* solid line, 3 pixels wide */
setcolor(2); /* tank top is red */
moveto(7,2); lineto(17,2); /* segment c */
setlinestyle(0,0,1); /* solid line, one pixel wide */
moveto(9,4); lineto(15,4); /* segment 4 */
setcolor(1); /* lower tank is green */
moveto(5,5); lineto(19,5}; /* segment e */

moveto(4,6); lineto(19,6}); /* segment f */
moveto(5,7); lineto(19,7); /* segment g */
moveto(6,8); lineto(18,8); /* segment h */
moveto(7,9); lineto(l17,9); /* segment i */

Listing 5. A program illustrating animation with a small
object.

one viewport at a time as well. This is shown in Listing 4. In this
program two objects differing in shape and colors are distributed
in a downward slant from the screen origin. Two library drawing
functions, fillpoly() and circle() are used for the object creations.
Note that each object is formed in its own function call. We can
create as many objects as we like and use control logic to call them
as appropriate.

~ Viewports offer an excellent approach to animation. The air-
craft of Listing 3 is easily “flown” across the screen by embedding
the viewgraph in a while loop incorporating variables for the posi-
tion and the function cleardevice() to briefly blank the object. (Be-
cause of its size the aircraft tends to “flop” rather than fly!) Listing
5 illustrates animation with the small tank object (Figure 3) cre-
ated by a series of colored parallel lines. Animation with a small
object of this kind is very rapid. Exciting screen action games are
possible through the combination of a background setting and ani-
mated objects in viewports.

Summary

We have learned that the IBM graphics system is uniquely dis-
tinct in almost every respect from the text mode. The distinctions
arise from hardware considerations. The variety of graphic adapt-
ers, mostly downward compatible, contribute to the difficulty of
creating widely portable graphics programs. The advances in li-
brary functions make it possible to create C graphics programs
previously possible only with assembly. Screen graphics design is
made easier by the use of a grid scaled in screen coordinates.

The Computer Journal / #43

Program examples illustrating object drawing, viewport manipula-
tion, and animation show many of the graphic possibilities while
providing understanding in how to use the library functions for
drawing, coloring, and positioning our objects.

References
The following are excellent sources of related information.
TURBO C Version 2.0 Reference Guide, Borland International,
1800 Green Hills Road, P.O. Box 660001, Scotts Valley, CA
95066-0001
Roger T. Stevens, Graphics Programming In C, M&T Publish-
ing, Inc., 501 Galveston Drive, Redwood City, CA 94063
Nabajyoti Barkakati, The Waite Group’s Turbo C Bible, How-
ard W. Sams & Co., 1989

User Disk

The code from Standardize Your Floppy Disk
Drives and Graphics Programming With C On the
IBM PC are available on a 5.25" 360K PC format
disk for $10 postpaid in the US.

25

Lazy Evaluation

by Marla Bartel, Hawthorne Technology

You probably thought that an article on lazy evaluation would
be about a technique for doing a product review without much
effort. You know, the kind some magazines do so they can men-
tion a hot new product, but manage not to tell you anything useful
about the product. This article is not about lazy authors. What we
are presenting here is the advantage of letting your computer be
lazy while getting it’s job done. It is wise to avoid work that does
not need to be done, even if it is a machine doing the work.

People who write compilers put a tot of effort into making their
compiler into one that will produce fast code. One method of
making code that will run faster is a technique known as lazy
evaluation. This technique cuts the amount of work the computer
has to do to evaluate a logical expression. In a complex logical
expression you can often know the result of the expression without
evaluating all of it. By ending the evaluation as soon as the result is
known, the computer does not waste time completing the expres-

"sion when there is nothing to be gained.

Some languages allow the programmer to specify whether or
not all of the conditions in an expression are going to be tested or
if only a minimal number of conditions will be tested. Languages
like ADA and C have separate operators for lazy and non-lazy
evaluations. Other languages, like FORTRAN and PL/M allow
‘the programmer to specify lazy evaluation by the level of code
optimization attempted. Then there are the languages like BASIC
and Pascal that don’t offer any control over the way the evaluation
is handled. Most Forths don’t have any built in means of doing lazy
evaluation but it is a feature that can be added. I am going to show
you how to add this feature to your Forth and some ways of using
‘L.

Lazy evaluation is not a new idea. It is used by every experi-
enced electronics technician. You check to sce if a circuit board
has proper power before you bother checking for signal levels at
the chips. If the voltages you need aren’t there, you don’t test any
further (at least until you solve that problem). Not making this
limited test in the first case could damage your test equipment or
at least waste your time. You can think of it as a triage system for
your computer to use on software. You let the computer spend its
time working on problems where the outcome is unknown. Once
you know how a logical evaluation will end, stop working on it.

You can use lazy evaluation as a programmers’ safety net. Ex-
ample 1 contains multiple compares, an arithmetic expression, and
a logical AND. In some cases, processing a complete expression
without checking each comparison not only wastes time but could
have side effects. In this example, if the first condition fails the
remaining parts may produce a run time error such as a divide by
zero. Have you ever seen some other obviously less skilled pro-
grammer than yourself write code that inadvertently causes a di-
vide by zero? MS-DOS feels this is sufficient to require locking up
the machine and waiting for it to be rebooted, (which at times is
inconvenient).
Example 1. Divide By Zero

IF A <> 0 AND (XYZ / A) < 14 THEN ---=

In example 1, using a language with non-lazy evaluation, if
A=0 the calculation of XYZ/A results in a divide by zero. Using

26

lazy evaluation, when the A<>0 test proved to be false, the re-
mainder of the tests would be abandoned.

A series of tests ORed together, (A OR B OR C), will be true
as soon as one of the tests is found to be true. In the same way, the
series of tests ANDed together (A AND B AND C), is false as
soon as one of the tests is found to be false.

In the normal evaluation of a Forth expression that involves
ANDing the result of several comparisons, each comparison is
done and all of the logical operations are processed. This takes
time and stack space. The lazy way to implement lazy evaluation
techniques with your Forth is by adding two words, FEXIT (false
exit) and TEXIT (true exit). At each level of your evaluation you
do a conditional exit if the result can be determined at this point.

Example 2.

Lumber Mill Saw Startup

check _log align FEXIT check saw clear FEXIT
checK:safety switch FEXIT saw power on make_cut
; -- test conditions and abort if not ready

Example 2 is a pseudo code example of how you could use
FEXIT. This is typical of a test that could be used as a startup
sequence in many industrial applications. This is not an example
that I have any personal experience with but I have vivid images of
it from discussions at the GOFIG (Greater Oregon Forth Interest
Group) meetings I attended. There are quite a few computers
dedicated to turning trees into lumber. I guess the guys in the
cutting room get a bit upset if your computer program causes a
saw blade to break. At the specds these blades are traveling, they
explode. Not very safe. Getting back to the example, if the log is
not lined up for the cut that is required, there is no reason to
continue. The cut sequence is aborted. If the saw blade is ob-
structed you don’t want to start it turning. Then you check the
safety switch which indicates the operator is behind his OSHA
safety shield. If any one of these requirements had not been met,
the sequence would not have continued. Now you can turn on the
saw and make the cut.

Another use for TEXIT and FEXIT is in control applications.
If something needs to be done in different ways at different times,
different procedures are tricd and as soon as one of them works
the routine is finished. These words can also be useful in searching
or lookup. The search is stopped as soon as a match is found.

The words TEXIT and FEXIT can be used to create words
that do a lazy evaluation of logical expressions. These words can be
used to create special words that perform a test. They can also be
used as part of a more complex word.

To use these words to construct a lazy evaluation create a spe-
cial word for the test. Then use TEXIT for an OR expression and
FEXIT for an AND expression. If the word is exited the result is
left on the stack. If the exit is not taken the intermediate result is
removed from the stack to clean it up since it will no longer serve a
useful purpose by being there. Any word that returns a TRUE or
FALSE result can use this method.

This is how the words TEXIT and FEXIT can be added to
most versions of Forth. In HT-FORTH these words are compiled
macros so while they work like the ones shown here, they don’t
look the same as these. You may have to make some small

The Computer Journal / #43

changes so these examples will work in your version of Forth.
Don’t use these words inside of a DO LOOP because the DO
LOOP in most versions of Forth uses the return stack to store the
loop parameters so the return address is buried. ENDIF is used
instead of THEN because we like it better.

Lazy Forth Words
When these words find the desired result, they drop one level
of stack and no return is done. When returning with a result they
don’t drop any part of the stack.

" TEXIT — true exit

Description: Exit from a word if the top of the stack is TRUE.
If the exit is taken, the TRUE flag is left on the top of the stack. If
the exit is not taken the FALSE flag is removed from the stack.

: TEXIT (T -=-T) (F--)

IF TRUE R> DROP ENDIF

Example 3 will return the value of:

(N=3) OR (N=5) OR (N=7) OR (N=9)
Example 3a shows the lazy way and 3b is the standard way of
evaluating the value of this expression in Forth. Notice that in
example 3a there is no special action after the last test. The final
test will leave the TRUE or FALSE on the stack and there is
nothing to gain by exiting the word rather than just continuing to
the semi-colon.

Example 3a lazy
: TXTST (N -- N tf)

DUP 3 = TEXIT DUP 5 = TEXIT
DUP 7 = TEXIT DUP 9 =
H

Example 3b standard

: TXTST (N -- N tf)
pUP 3 = OVER 5 = OR
OVER 7 = OR OVER 9 = OR

i

While the code for example 3a looks as long as that for 3b, your
computer won’t have to go through all of it every time as it would
with the code in example 3b.

FEXIT — false exit

Exit from a word if the top of the stack is FALSE. If the exit is
taken, the FALSE flag is left on the top of the stack. If the exit is
not taken the TRUE flag is removed from the stack.

: FEXIT (F--F) (T ==
NOT IF FALSE R> DROP ENDIF
’
Example 4 will return the value of:
(N>4) AND (N<30) AND (N<>7} AND (N<>9)
Notice that there is no special action after the last test. The last
“test leaves TRUE or FALSE on the stack and ends the word
through the semi-colon.

Example 4a lazy

s FXTST (N -- N tf)
DUP 4 > FEXIT DUP 30 < FEXIT
DUP 7 <> FEXIT DUP 9 <

’

Example 4b standard

: FXIST (N —= N tf)
DUP 4 > OVER 30 < AND
OVER 7 <> AND OVER 9 <> AND

H

With these two words added to your Forth you can duplicate
some of the standard functions of C. Here are a few you might
want to have around.

ISALPHA tests the item that is on the top of the stack to see if
it is an ASCII alphabetic character. You exit false if the number
on the stack is lower than any alphabetic values in the ASCII table:
A=65.7Z=90..a=097..z =122 If the number is within the

The Computer Journal / #43

range of upper case characters you can exit true. If you didn’t exit
here you know the number is not upper case. At this point, if the
number is less than lower case ‘@’, you can exit false. Now if it is
then less than or equal to lower case z you exit true, otherwise you
know the number is not an alphabetic character and the result of
ISALPHA is false. Using lazy evaluation, if the first test had failed
you would not have had to read this whole description.

: ISALPHA (a--atf)
DUP 65 < FEXIT
DUP 91 < TEXIT
DUP 97 < FEXIT
DUP 123 <

’

ISDIGIT checks to see if the item on the top of the stack is an
ASCII digit (0 - 9). If it is less than zero, the false exit will be
taken. If it is greater than zero, it is checked to see if it is greater
than 9. If it is within range the top of the stack will indicate true.

: ISDIGIT (a--atf)
DUP 48 < FEXIT
DUP 58 <

12

ISSPACE determines whether or not the character on the top
of the stack is a white-space character. First it is checked to see if it
is an ASCII space. If it is, you are done. The result is true. If not,
you proceed to check for a TAB, a LINE FEED, and a CURSOR
RETURN. If any of these turn out to be true, the exit will be
taken and no further tests will be made.

: ISSPACE (a--atf)
DUP 32 = TEXIT
DUP 9 = TEXIT
DUP 10 = TEXIT

DyUP 13

7

ISLOWER s a word that checks to see if the item on the top
of the stack is a lower case alphabetic ASCII character. First it
checks to see if the number is too small. The exit is taken if it is. If
the exit is not taken, the value is checked to see if it is within the
range of the lower case characters. The result of this check will set
the true/false result on the stack.

¢+ ISLOWER (a--atf)
DUP 97 < FEXIT
DUP 123 <

7

ISUPPER is like ISLOWER except it checks to see if the item
on the top of the stack is an upper case alphabetic ASCII charac-
ter. First it checks to see if the number is too small. If the exit is
not taken, the number is checked to see if it is within the range of
upper case characters.

: ISUPPER (a--aztf)
DUP 65 < FEXIT
DUP 91 <

’

By adding a couple new words to your Forth from time to time,
you can continue to improve your Forth code. If after having a
word for a while, you find that you don’t use it enough to justify
the space it takes, you can always take it out again. Try TEXIT
and FEXIT. They give you a clean way to get out of evaluating a
complete expression when it is not necessary. Some people think it
makes Forth a little easier to understand. ® '

27

$S-100

There's Still Life in the Old Bus

by Michael Broschat

In issue #35, I discussed the building
of an §-100 EPROM burner board kit
sold by Digital Research of Texas. I de-
tailed how the motivating factor had been
to change the way my Sierra Data Sciences
computer was booting itself into some
fancy serial interrupts, thereby possibly
keeping a new disk controller board from
operating correctly in that system. The
newly-burned boot PROM in place, I
booted the system successfully, only to dis-

. cover that the new configuration made no
difference. I now believe the real answer
to have been that since the board operates
completely within IM2 (Zilog’s interrupt
mode 2), where all I/O devices, including
the disk controller, are interrupt-driven in
the approved daisy-chain manner, there is
no way the non interrupt-driven new
floppy board could work reliably (without
extensive understanding and modification
of software driving both systems). Anyway,
the whole question is moot. My SDS

" board died some months ago, never to be
resuscitated.

So, what to do with a brand new
EPROM burner? A couple things entered
my already cluttered mind. Let me digress.
Unlike Rick Charnes, to whom I offer my
apologies, I have been less than satisfied
with my Qume 102 terminal. When T first

-got it, the key action bothered me. Now 1
am used to it, and all others scem inferior.
But that’s an old story. The biggest prob-
lems have been: the poor way it handles
video attributes (except for normal/dim),

where it introduces a space for every new
attribute, making all but the normal/dim
feature useless for most of the terminal-

dependent software that has been such a
plus for the Z System; and its poor han-
dling of data streams at 9600 bps and up.
The terminal is capable of 19.2K opera-
tion, but even at 9600 it has had trouble

since I got it. Very curious, that. The uni-
versal problem has been MicroPro instal-
lation programs (not the programs them-
selves). From much to most of the screen
text is unreadable, a problem I later dis-

28

covered has to do with dropped charac-
ters. One of the installation programs re-
quires slowing the terminal down to 2400
baud before all text can be read. A couple
years ago I went so far as to desolder the
static RAM chips, which I learned were
quite slow (about 450 ns, I think), replaced
them with socketed (just in case) faster
chips, and then discovered that none of
this made the slightest difference. Qume
responded to one inquiry with a ROM up-
date (probably making it equivalent to
Rick’s more recent model), but that made
no difference, either.

So, T learned how to add hardware
handshaking (easy via the SDS Zilog SIO
and a cable modification) and changed the
default operating speed to 19.2K. That
works perfectly, but of course not at a real
19.2K because of the handshaking.

I recalled seeing an ad in an old hacker
magazine. This turned out to be MI-
CROSYSTEMS and the later MICROSYS-
TEMS/JOURNAL. A company called Sim-
pliway offered S-100 board kits for a
couple different devices, one of which was
a video board with all kinds of neat fea-
tures. All those features meant one thing
to me: fast. So, fresh from kit-building suc-
cess, I decided to see whether Simpliway
was still available. They are. Dan Lurey
has kept up the front, at least, and an-
swered my inquiry with a brochure. You
can request your own, but just looking at
the brochure was exciting. The bareboard
video terminal is only $50 (you find and
buy all the components), and there are
various options up to supplying you with
all the parts. After some thought and a
conversation with Dan, I bought both the
video board and a buffered 1/O board,
plus a few of the rarer parts. I have now
finished the video board and want to tell
you about it.

First, the manual is excellent. Much
care has been taken to keep the non-ex-
pert in mind. The only real trouble I recall
experiencing was in the finding of all the

components, or more commonly, ones
that would fit. I probably saved some
bucks buying the parts myself, but it took a
good 2-3 weeks before T got everything in
a usable form.

The board uses an on-board Z80 to
handle the actual work of driving the CRT
chip (an Intet 8275). PROMSs (you knew
they had to get in here somewhere) hold
the character definition code and of course
the program that drives the whole works.
It comes with a program that emulates a
Televideo 910, but you are free to alter it
in any way you like. T had a vision of
changing the incvitable 8080 code into hot
stuff Z80 code, but Roger Vilmur, evi-
dently the programmer there, has done a
fine job already. I might end up adding a
function or two (haven’t noticed a screen-
blanking function), but the program looks
solid. And, attributes don’t take up space!
And, it operates through the bus, either
port addressed or memory mapped, at ef-
fective speeds plenty fast enough to satisfy
me (another board’s specs claim 80,000
baud, but although Simpliway prefers
19.2K, the actual speed is probably the
same for each board--fast).

You nced a regular old monitor and a
keyboard. The monitor is easy —the VDB-
A (its designation) allows both composite
and separate video/synch connections, so
IBM-type monitors can be used, but the
keyboard is another story—you need a
parallel one. I have ended up with an old
Jameco no-function key, no-cursor key
keyboard after missing out on a deal
through Jameco itself on some snazzy
Cherry full-featured keyboards. Perhaps
you’ll have better luck (I'm not through
looking yet). Dan tells me he has designed
an interface for standard IBM PC key-
boards, but whether that will become
available will probably depend on how
much interest we can generate (count me
in!).

Now, I'd love to tell you how wonder-
fully all this works, but I can’t. The death

The Computer Journal / #43

of my Sierra Data Sciences machine left
me without a machine upon which to de-
velop system software for any of the other
controller boards I currently own (that
story is worth a novel), so although the
VDB-A is built and raring to go, there is
nothing on which to run it—yet. Which
leads me to the next discovery.

_ After a few failed experiments involv-
ing a borrowed machine (also interrupt-
driven, which proved the final proof re-
garding the incompatibility of the afore-
mentioned disk controller), I had to have a
disk controller with a boot disk. Once
again, the ads. I discovered what is proba-

, bly the only S-100 disk controller manufac-
turer still in business (as an S-100
manufacturer) —Fulcrum of Healdsburg,
California. They offer what proves to be a
fine deal: their controller for $250, or with
a WD1002 hard disk controller card for
$300, or all that with a hard disk for $400.
I took the latter. I never dreamed I’d own
a hard disk, and actually had not looked
forward to one, since their noise is more

. than I am comfortable with, coupled with
the fact that I have also built a 1-meg
RAM disk (also from Digital Research/
Texas). But it was a bargain and an oppor-
tunity. Don’t let either go by easily.

This disk controller (I had earlier
bought their 8 MHz CPU board, which I
was going to use with one of the other con-
trollers 1 have) was quite a find, a truly
pleasant shock, the discoveries about
which came after receiving it. I wasn’t pre-

. pared for the fact that it supports floppies,
hard disks, and RAM disks without any
sacrifice in system size! My Sierra Data
Sciences system came with a 58K system.
Although there was a 1K hole up there
into which I plugged minimal versions of
first ZCPR 3.0, then 3.3, most of the sys-
tem was going to waste as it included hard
disk drivers 1 couldn’t use, features 1
couldn’t disable, etc. I was stuck with 58K
max, and anything I wanted to add would
take it down further. This Fulcrum Omni-
Disk system is a full 64K in size, and there
appears to be enough room left in the
BIOS to fit Bridger Mitchell’s DateStam-
per module. The OmniDisk accomplishes
this miracle by off-loading almost all nor-
mal BIOS activity to the microprocessor
on-board the disk controller. About the
only thing the native BIOS does is make
“system” calls to its partner. And data
transfer is by DMA (or not, as you
choose).

Off-loading all that processing to the
disk controller allows for a virtually unlim-
ited warehouse of functions. One of spe-

The Computer Journal / #43

cial use to me allows one to configure any
floppy drive to one of the formats included
within the configuration utility. A miracle
here is that one, for the California Com-
puter System, fits my SDS disks. I thought
all those disks were lost for good.
Throughput is also increased through full-
track buffering. Each time a sector is re-
quested, its whole track is read and the
contents kept in RAM (right, on the Om-
niDisk). If the next sector needed is al-
ready in the RAM, well, no more reads.

The combination of this 8 MHz CPU
and this truly remarkable disk controlier
makes for one ideal Z System machine.
The full 64K system means that any of the
several RSX-type add-ons that have been
or will be developed for former CP/M ma-
chines (Backgrounder ii, DOSDisk, BYE,
etc.) will be allowed to run without seri-
ously affecting one’s normal programs.
That certainly cannot be said of my Sierra
Data system. Now, for example, when I in-
voke WordStar 4.0 on the native Fulcrum
system, WS4 tells me 1 have 59K of TPA;
after running NZCOM, it tells me I have
55K; after running BGii on top of all that,
I still have 52.3 —plenty enough even for
memory-hungry WordStar. These figures
are before any kind of customization, so
perhaps even more can be squeezed out. |
am anxious to try Bridger’s DOSDisk on
this machine, since the off-board BIOS al-
ready contains the definitions for MS-DOS
formats. Presumably, very little work will
be necessary to get DOSDisk to read and
write MS-DOS formatted disks on this
machine (Fulcrum provides a Pascal trans-
fer program to move data back and forth
between the two incompatible formats,
but DOSDisk allows the MS-DOS drive to
be used transparently on a CP/M system).

Fulcrum has expressed willingness to
release the system source code (you get
the BIOS anyway, and even the CPU
board monitor ROM contents), that is, the
code that is driving the on-board 8085
(yeah, too bad it isn’t a Z80). I haven’t
seen this yet, but it occurs to me that at
least a couple different products could be
derived from this: a system that puts the
BDOS and BIOS segments (anything
else?) into RAM above 64K (like any
modern S-100 board, the OmniDisk and
MPU-Z CPU board address 16 mega-
bytes); and different ROMs for the Omni-
Disk, where an enterprising programmer
could conceive and execute even more
functions than are currently available for
this system (perhaps even combining both
these points). Anyway, even if nothing else
happens, I'm happy. As I write this, I am

using a “loaner” (from a former Fulcrum
owner near my area--thanks, Tim) while a
buggy chip on one of the boards is diag-
nosed and replaced, but as soon as I am
running my own hardware I will at last be
able to quit fooling with all this hardware
stuff and get down to some serious Z Sys-
tem programming. But then there is that
EPROM burner just waiting for more ac-
tion... @

Companies Mentioned

Simpliway Products Company
P.O. Box 601
Hoffman Estates, IL 60195
Fulerum Computer Products
459 Allan Ct.
Healdsburg, CA 95448
(707) 433-0202

Plu*Perfect Systems == World-Class Software

BacCKGrouNder §i .uvceeeccceeeeecmrrrsscerressseeressssssssssmsssssssassssssmssnnasssssssassnnanens $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator,
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

AT (1 1 1 TP $69.95

Auto-install Z-System (ZCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

PlUPEITECT WO ..ceeeeeeeeiviisssseesssssrrsmmnsssssaeessasnmnsssstanssnnnssssssssnmnssnennnsnss $35

Powerful text and program editor with EMACS-style features. Edit files up to
200K. Use up to 8 files at one time, with split-screen view. Short, text-oriented
commands for fast touch-typing: move and delete by character, word, sentence,
paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk
change, space on disk. New release of our original upgrade to Perfect Writer
1.20, now for all Z80 computers. On-disk documentation only.

A=Y 00 1 J O $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided instaliation.
Enhanced time and date utilities. CP/M 2.2 only.

DOSDISK coveeueenrneeemesasomnsaeamnssersnssssanmnssssasssnsssnnsssrennnssssannnnsannnssneennns $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
w/TurboRom, Kaypro w/KayPLUS, MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY oo cerccrcestninnsssssenne s as s e nn s nsem s s e s e e m e e s s s mn s s $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro w/TurboRom.

B - o 11 Vo PP PA $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product, operating Plu*Perfect Systems
system, computer, 5 1/4" disk format. 410 23rd St.
Enclose check, adding $3 shipping ($5 Santa Monica, CA 90402
foreign) + 6.5% tax in CA. Enclose invoice (213)-393-6105 (eves.)

if upgrading BGii or ZRDOS.

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind ©
Copyright 1986-88 by Bridger Mitchell.

30 The Computer Journal / #43

Advanced CP/M

Please Pass the Parameters
" by Bridger Mitchell

In day-to-day coding the Z80 programmer calls subroutines
using the Z80 registers to pass parameters and results to and fro.
This mechanism is effective, fast, and generally transparent.
Probably well over 95 percent of applications are coded this way.

Occasionally, however, it’s valuable to have a wider range of
tools at our disposal. This issue’s Advanced CP/M illustrates scv-
eral other mechanisms for use in programs when space is at a
premium, general-purpose functions are required, and complex
error recovery must be managed.

Inline print function

T’ll begin with a familiar example. Assume that somewhere in
the program there is a “print_to_nul” routine that prints a string
of characters, pointed to by the HL register and terminated by a
binary zero, on the console. The ordinary way of calling this sub-
routing is:

1d hl,stringmsg
call print_to_nul
call next_function
P oeee

stringmsg:
db ‘A string’,0

The alternative inline_print function places the string “in line”
--right in the flow of the code itself:

call inline print
db ‘A string’,0
call next_function
Seee
H
inline_print:
ex (sp),hl
call print_to nul
ex (sp),hl
ret

Instead of using the HL register to pass the address of the
string, the inline_print function makes use of the return address
that is already on the stack when it is called. This saves loading a
register with the string address and may increase the readability of
the source code by placing the message near its use. It is, however,
a nuisance when debugging.

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He’s the
author of the widely used DateStamper (an automatic, portable file
time stamping system for CPIM 2.2); Backgrounder (for Kaypros);
BackGrounder ii, a windowing task-switching system for Z80 CP/M
2.2 systems; JetFind, a high-speed string-search utility; DosDisk, an
MS-DOS disk emulator that lets CPIM systems use pc disks without
file copying: and most recently Z3PLUS, the ZCPR version 3.4 sys-
tem for CP/M Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St,
Santa Monica CA 90402, or at (213)-393-6105 (evenings).

The Computer Journal / #43

Multiple parameters

Functions needing several parameters are often called by load-
ing separate registers:

1d hl,paraml
1d de,param2
id bc,param3

call funct3

When more parameters are involved, one can also use the al-
ternate registers, or the stack:

id hl,paraml
push hl
1d hl, param2
push hl
call function3

But as with the print_to_nul function, there’s an in-line way to
pass these parameters:

call inline function3
dw paraml”

dw param2

dw param3

This may be worthwhile if ‘function3’ is called many times.
And, if the function has a variable number of parameters, the
number of parameters can be passed as the first argument:

call functionX
dw N

dw paraml

dw param2

dw paramN

Still more flexible is to use an intermediate dispatching routine.
The calling sequence is then

call dispatcher

dw functionX
dw N

dw paraml

dw param2

Inline register functions

When the same operation must be performed many times
throughout a program, specialized routines may be able to reduce
code size. The following example is based on a technique used in
Mike Arenson’s PMATE editor. There is a pool of 16-bit words
(pointers, indexes, counts, and so forth) that require frequent
arithmetic operations—most commonly comparisons. These
words are kept together in a data pool of not more than 128
words, beginning at some base address.

To compare two words—wordl and word2—the calling se-
quence is simply:

31

callits exx

Figure 1. Error handling in nested calls.

pop hl
1d e, (hl) ; get lst parameter
inc hl ; {addr of error routine)
1d 4, (hl)
ine hl
push de ; push it onto stack
1d de, -1 ; push -1 sentinel
push de
1d e, (hl) ; get 2nd parameter

’ inc hl ; (addr of routine to call)
1ld d, (hl)
inc hl
push hl ; push the ret addr (following the params)
1d hl,normalret ; push addr of normal termination routine
push hl
push de ; push addr of function to be called
exx
ret ; ‘call’ it

! ; terminate ok

normalret:

exx
pop hl ; get ret address from stack
pop de ; strip off sentinel (-1)
pop de ; strip off error address
push hl ; put ret address onto stack
exx
ret ; and continue there

Get inline error code

their intermediate and final data structures. It’s a
challenge to recover from an input error —a miss-
ing semicolon, a mistyped digit—and then pro-
ceed with processing to provide as much useful
diagnostic output as possible.

A useful strategy is to establish an error-han-
dier for each major type of problem, and have the
program jump to it when trouble is detected. For
example the C language function library generally
provides the setjmp/longjmp pair of functions.
The program calls setjmp to establish a “bailout”
return point, and then later calls longjmp to exit
from any subsidiary routine back to this point.

The following assembly-language example is
based on the error-recovery code used in the TDL
assemblers and linkers. A major subroutine, say
the symbol parser, is called indirectly with two in-
line parameters—the address of an error handler
and the address of the primary function.

call callit
dw error_handler
dw parser

The parser itself calls many routines, and they
of course call others, quickly leading to consider-
able nesting. Along the way there will be many
validity checks. If an error is detected, the code
calls a general-purpose error handler and passes
an in-line parameter to indicate the type of error.

call error
db err code

This error routine then typically reports the er-
ror code to the console with a suitable text mes-
sage and then dispatches directly to
‘error_handler’ which cleans up memory, open
files and so forth, and then resumes the program.

But how does the general-purpose error routine
know which error handler to use? And how does it

i
; Clean up stack and dispatch to error handler
H
error: exx
pop hl ; point at argument
1d a, (hl) ; get byte argument (error code)
14 de,l ; prepare an addend of 1
popoff: pop hl ; pop and discard stack parameter
add hl,de ; until ~1 encountered (setting the CY)
jr nc,popoff ; ..continue popping the stack
exx .
ret ; return to error handler addr
;
call inline compare
db R1l, R2

R1 and R2 are the offsets for word1 and word2, in number of
bytes, from the base of the data pool. Thus, if the data structure is:

base: dw word0
dw wordl
dw word2
then
Rl equ (wordl-base)
R2 equ (word2-base)

The inline_compare routine returns with the Z80 flags set ac-
cording to whether wordl is less than, equal to, or greater than
word2. The routine preserves all registers except the flags.

It’s hard to do better than 5 bytes of overhead to call a 16-bit
compare routine! If, however, a Z80 restart instruction is available
for use, the call can be trimmed to just three bytes:

RST 20h
db R1, R2

In addition, the application must initialize three bytes at 0020h
to be:

jp inline compare

Of course, I must immediately say that such code would not be
fully portable, because some Z80 systems use the restart instruc-
tions for BIOS operations.

Error recovery

Assemblers, compilers, linkers and other high-powered tools
must travel deeply nested paths as they parse, analyze and build up

32

get the stack correctly restored, since it contains a
possibly large number of return addresses, and other parameters
that separate the point of error and the original calling point?

The technique is to place an extra parameter on the stack, a
sentinel, that will identify the error handler’s address. In this case it
is -1, or OFFFF hex, a value that cannot occur as a return address
in an application and (because of the parameter-passing conven-
tions used in this application) also cannot be a parameter on the
stack. The error routine simply pops the stack repeatedly until it
finds the -1 value. The value above that is then the error_handler
address.

The key routines are shown in Figure 1. In this case, the alter-
nate Z80 registers are dedicated to processing the normal and
error termination conditions so that the code can retain the main
registers for returning results from subroutines.

Other techniques

One of the rewarding aspects of programming your own appli-
cations is that there are always several ways to accomplish the task.
Program design involves examining the alternatives and choosing a
suitable path. And frequently that process leads to refinements
that yield more transparent and readily maintained code as well.
I'm certain that a number of TCJI readers have encountered and
extended other parameter-passing techniques. If you’re one of
them, drop me a note and we can continue the discussion in a
future column. e

The Computer Journal / #43

Real Computing

The National Semiconductor NS32032

by Richard Rodman

By now, you’ve probably heard: the 32764
has been canceled. The processor that was to be
the 32764 will become a killer processor for the
embedded systems market, with a performance
goal of 90 to 100 MIPS. And remember, NS32
MIPS are real CISC MIPS.

The only thing I don’t like about National’s
approach is their belief that embedded systems
don’t need an MMU. Needing an MMU has
little to do with applications—it has to do with
.multitasking. Besides, the MMU is one of the
best features of the NS32 architecture —simple,
well thought out, clean, integrated.

And, on the subject of MMUs: Intel's 386
processor has a demand-paged MMU which is a
blatant copy of the NS32 MMU. It uses 4K byte
pages in a two-level scheme identical to that of
the 32382. In fact, while all of the names have
been changed, the 386’s page table entries are
exactly the same as the NS32382’s, except that
the A bit (R bit) and D bit (M bit) have been
shifted up one bit. Of course, it isn’t integrated
into the instruction set like the NS32’s, and the
386 has all of that awful segment selector gar-
bage, so page fault processing will be really diffi-
cult. It does prove one thing, though: You can
teach an old dog new tricks!

New NS32 Systems

National Semiconductor has an evaluation
and development board available for their
32CG16 computer-graphics version of the
32016. This board includes the raster graphics
chip set, and is an AT-form-factor motherboard
with AT-bus slots. The part number is NSV-
CG16-EDB, and it’s available for $1195 from
your local sales office.

Other people out there are working on PC
motherboards with NS32 processors, similar to
Peripheral Technology’s 68000 board, but none
are available yet. Watch this space for further
information.

Some not-so-new ICM-3216 boards are avail-
able, as well as an S-100 board with a Z-80 and a
32016. If you're interested in these, leave a mes-
sage on my BBS.

The Computer Journal / #43

Listing 1

;ICUTEST.A32 - Test program for the ICU.

icubase .equ OFFFEOOh
mnymod .equ 0200h

.code
br init
br inthandler

;Copy my module table to ‘‘mymod’‘.

;base of ICU
;copy of my module table entry

;8/b 2 bytes
;interrupt handler
This is so that, when you load

;another program later, the module entry won’t be overwritten by that

;for the new program.

init:
movzwd mymod,rl
sprw mod, r0
movzwd x0,r0
movd 0(r0),0(rl)
movd 4(r0),4(rl)
movd 8(r0),8(rl)

;Set intexrupt vector descriptors in place.

sprd intbase, r0
movd $#00020200h,64(x0)

;pick up current intbase
jvector descriptor, vector 16

;Initialize ICU per initialization sequence shown in databook figure 3-10

;ICU clock on CPU-32016 is 2MHz.

Note that register number is doubled

;for CPU~32016. For a PD-32, it would be quadrupled; for the 32532

;Designer Kit, it would be unchanged.

movd #icubase,r0
;Set MCTL leaving coutd at logic 1
novb $#01000000b,32(x0)

;MCTL

;Halt counters by clearing bits crunl and crunh in CCTL

movb $00000000b,44(x0)
;Initialize LCSV, HCSV and CIPTR

;Timer countdown = 20000 (100Hz, 10ms)

movb #20h,48(x0)
novb #4Eh,50(x0)
movb #00h,36(x0)

;CCTL - both counters stopped

= 4E20

;LCSV - L-counter starting value

;CIPTR - change clocks to vector 0

;Write counter starting value into LCCV to prevent long initial counts

mnovb #20h,56(x0)

mnovb #4Eh,58(x0)
;Initialize CICTL

movb #00000011b, 46(x0)
;Initialize IPS, PDIR, OCASN, PDAT

movb #00000000b, 40(x0)

movb $11111111b,42(r0)

movb $00000000b, 34 (x0)
;Initialize SVCT, ELTG, TPL, FPRT

movb #16,2(x0)

novb #0FFh, 4(x0)

mnovb #0FFh,6(r0)

movb #0h,8(x0)

movb #0h,10(x0)

novb $#0,28(x0)

;LCCV - L-counter current value

;CICTL - enable ints on L counter
;IPS - all pins I/O
;PDIR - all pins input

;OCASN - no clocks on pins

;SVCT vector = 16
;ELTG - all ints level-triggered

;TPL - all ints low true

;FPRT - 0 first vector

;Reprogram MCTL COUTD bit to enable interrupte

movb #00000000b, 32(x0})
;Start counters
movb #01000100b,44(x0)

;Initialize IMSK
movb #11111110b,20(x0)
movb #11111111b,22(x0)

sMCTL

;CCTL - only L counter running,
;not prescaled

;IMSK - unmask vector 0

More Free Operating Systems

There are other free operating systems besides Bare
Metal. By “free”, I actually mean that they are available
to anyone at low cost with complete source code. T'll
briefly touch on a couple of these.

Xinu is described in the book Operating System De-
sign, the Xinu Approach by Douglas Comer (Prentice- .
Hall, 1974). Source is available from Prentice-Hall on | :
~magnetic tape for PDP-11s, or from Austin Code Works i
for PCs. Xinu is a very simple multitasking operating

.
7

system; it has educational merit, but as a real working inthandler:
environment, it’s pretty bare-bones. The name “Xinu” save [rx0)
stands for “Xinu I ix” it isn’ movzbd #50h,r0
s Not Unix ’ and it isn t, not by a long addgb 41,0(x0) ;incr hundredths of seconds

shot. cmpb 0(x0),#100

Minix is described in the book Operating Systems - blt N intdone
g . . mnovg #0,0(x0)
Deszgn. and Implementation by Andrew Tanenbaum addgb #1.1(r0) sincr seconds
(Prentice-Hall, 1987). Source and executables are avail- cmpb 1(r0),460
able on diskette from Prentice-Hall for $79. “Minix” blt intdone
stands for “Mini-Unix”. Actually, Minix is a pretty com- ':g‘égg :‘;';ti g; iner mint

. . . . ’ H minutes
plete Unix version 7 npplement.at}on for PCs.. If you cmpb 2(r0),#60
have a PC but want Unix, get Minix. The book is also a blt intdone
good tutorial on how various things work in operating movgb #0,2(r0) ,
t lthoush it h . K in that addgb #1,3(r0) ;incr hours
systems, too, a ugh it has a serious weakness in tha cmpb 3(r0),#24
other implementations (non-Unix features) are not even blt intdone
. mentioned. movgb #0,3(r0)
. . intd H

Other operating systems that are available for free, rmecone restore [r0]
with a commensurate amount of documentation and reti
support, are Trix and Uzi. Trix is a Unix-like operating 4

en

system for the 68000. Uzi is a Unix-like kernel for the Z-

;jSet up for interrupts to happen

3=~ Interrupt handler --
;This simple handler increments a value at 50 hex consisting of:

;It could be expanded to keep time in other fashions if desired.

setcfg (i,f) ;make interrupts vectored
bispsrw #0000100000000000b ;jenable interrupts
Xp 0 sjreturn to srm

50 - 1/100 seconds (10 ms)
51 ~ seconds

52 - minutes

53 - hours

80.

But if I get to pick a “book of the month”, like other
columnists, the book of this month would be the new edition of
Ted Nelson’s Computer Lib/{Dream Machines (Microsoft Press).
While we have fulfilled the dream of making machines available to
everyone, how little progress we have made toward making them
.easy to use! Cybercrud lives on.

Incidentally, I tried out a computer called the Macintosh, made
by Apple Computer, Inc. While it has some direct manipulation
features that are kind of nice, there’s still a lot of mysterious, invis-
ible features (like “cloverleaf D to duplicate”), and no visible way
to request Help. There’s a new concept called a “command line”
that lets you make requests of the computer using English-like
sentences. After all, some actions are not easily expressible in di-
rect manipulation terms. I hope it catches on.

The System Architecture for the 90s

In other big news, DEC finally rolled out their long-anticipated
VAX 9000 system. This machine features, besides many hardware
innovations in packaging and interconnection, a new system archi-
tecture: the central switch architecture. The system should be able
to achieve an I/O bandwidth far in excess of previous models that
used the BI- or Q-buses. And as we know, I/O bandwidth is what
really separates mainframes from PCs.

DEC also optimized its CISC processor so that the 80 percent
of most-used opcodes execute in a single instruction cycle. Each
processor can achieve 30 VAX MIPS. Currently, up to four proc-
essors can be installed. The central switch, called the System Con-
trol Unit (SCU), can set up four independent paths between these
four processors and other system elements.

The central switch architecture represents the third stage in the
evolution of bus architectures. Now, I’'m not a bus expert, so for-

34

give me if my jargon isn’t correct.

In the first stage, the simple bus architecture, the processor
signals on a single CPU board are converted to generic bus
equivalents and used to communicate in a master-slave fashion
with other boards in the system. Sometimes there can be multiple
CPUs, but only one acts as a master at a time. This is the architec-
ture of the S-100, PC, AT, NuBus, VME bus, Micro Channel, and
nearly all other common buses. Some of these buses have elabo-
rate protocols for supporting multiple CPUs on the bus, but the
practical differentiating feature is that the bus has an address por-
tion or phase and a data portion or phase.

The second stage is a message-passing bus. Unlike the simple
bus architecture, every board in a message-passing bus system
must be a complete system, with RAM memory, processor, clock,
etc. that it needs. The separate processors communicate with each
other in a message-passing fashion, similar to a local area network.
Now the separate entities which sit on this bus might have their
own local simple buses for expansion in a multiple bus system. The
only commercial bus I know of with this architecture is Multibus
II. As might be expected, this architecture imposes a greater bur-
den in parts cost, but achieves greater performance because, when
not communicating, the individual processors can run at full speed
in parallel. However, when communicating, only one processor can
“speak” on the bus at a time. Further, the speed of the bus is
limited to the speed at which the slowest processor can “speak”.

The central-switch architecture is similar to the message-pass-
ing architecture, except that the central switch is used to set up
multiple independent paths between interconnected processors.
Now, separate transfers between processors can take place simul-
taneously. Again, individual processors may have their own local

The Computer Journal / #43

buses.

The central-switch architecture, while new to general-purpose
computerdom, has actually been used in the telephone industry
for years to create switches, which need tremendous I/O band-
width but limited computing requirements. New hardware tech-
nologies, however, could make this system architecture possible
for even small systems. Texas Instruments makes a part, the
74ACT8841, which implements a 16-port, 4-bit-wide switch allow-

ing any port to be connected to any other port. Using 8 of these
" devices, 16 32532 systems could be interconnected to produce a
small, but very high performance system.

Transputer fans have a C004 crossbar switch device, which is
similar but switches the transputer’s serial links. The general ver-
dict on the transputer seems to be: “Wonderful hardware, but too
‘hard to program.”

And there is the true price of the central-switch system. Com-
puters are developing slowly out of their tinker-toy stage and be-
coming genuinely difficult to program. People expect more and
more of software, but the software tools of today are still crude.
Yet better tools, once developed, are locked away as trade secrets
or, even worse, software patents. Any future worth living in is
worth making sacrifices for.

The NS32202 Interrupt Control Unit (continued)

Last time, I described the NS32202 ICU. This time I’'m includ-
ing a sample program to test out the operation of your ICU (List-
ing 1). This program is your typical interrupt demonstration that
makes your system into a digital clock. Remember that, for your
system, you may have to change the register number offsets to the
register times 1, 2 or 4. The listing shows register times 2.

Next Time

Next time I’ll have some benchmark data on the NS32532,
since I have my Designer’s Kit running now. @

Where to call or write

BBS: 703-330-9049 (Richard Rodman)

Austin Code Works
11100 Leafwood Lane
Austin TX 78750-3409

Prentice-Hall, Inc.
Route 59 at Brook Hill Drive
West Nyack, New York 10995

Peripheral Technology
1710 Cumberland Point Dr. #8
Marietta GA 30067

Technology Resources

K-OS ONE —Single user generic 68000 operating system
for your 68000 hardware. It uses the MS-DOS disk format,
and includes the operating system with source code (written
in HTPL), an editor, assembler, and HTPL compiler. A
sample BIOS code and a boot {oader are included. This is
not ready-to-run—you have to install the BIOS on your sys-
tem, but the source code and language compiler are in-
ClUdEd ..o $50

HT-Forth—A full featured, interactive Forth that works
with the K-OS ONE operating system. It uses a full 32 bit
stack and 32 bit arithmetic to take full advantage of the
68000. Programs are position independent and are limited in
size only by the memory available. Source code compiles to
inline macros, JSR, or BSR so there is no inner interpreter
overhead. Standard ASCil! files are used. Includes full screen
editor and a Forth style 68000 assembler $100

-

68000Cross Assembler—Wiritten entirely in 8086 assem-
bly language, it is small and fast. All input and output is done
with standard MS-DOS calls so it will run on any MS-DOS
system, even those which are not totally PC compatible. All
68000 and 68010 instructions are supported. It has condi-
tional assembly, the symbol table is in alphabetical order,
and cross referencing is included. Inciude files are sup-
ported so it is easy to assemble big programs, but edit them
in small pieces. An equate file can be produced for PROM
based programiming.......c..cccccrvinmee, $50

ORDER FROM

Technology Resources
190 Sullivan Crossroad
Columbia Falls, MT 59912
Phone (406) 257-9119

Visa and Mastercard accepted
Prices postpaid in the U.S. and Canada

The Computer Journal / #43

THE COMPUTER JOURNAL

Back Issues

Issue Number 29:

* Better Software Filter Design

* MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.

* Using the Hitachi HD64180: Embedded
« Selecting and Building a System processor design.

e The SCSI Interface: SCSI Command « §8000: Why use a new OS and the 680007
Protocol » Detecting the B087 Math Chip

* Introduction to Assembly Code for CP/M s Floppy Disk Track Structure

¢ The C Column: Software Text Filters « The ZCPR3 Corner

« AMPRO 186 Column: Installing MS-DOS Issue Number 30:

Software

s The ZColumn

* NEW-DOS: The CCP Internal Commands
s ZTIME-1: A Realtime Clock for the AM-
PRO Z-80 Littie Board

.
.
.
.
Issue Number 25: P
.
.

Issue Number 24:

Issue Number 18:

¢ Parallel Interface for Apple |l Game Port
» The Hacker's MAC: A Letter from Lee
Felsenstein

e S-100 Graphics Screen Dump

¢ The LS-100 Disk Simulator Kit

Doubile Density Floppy Controller
ZCPR3 IOP for the Ampro L.B.
3200 Hacker's Language

Issue Number 1: MDISK: 1 Meg RAM disk for Ampro LB,

*» RS-232 Iinterface Part One * BASE: Part Six a;ltozn-Preempﬁve Multitasking

| . etecompufing with ‘e Apple | * Interfacing Tips & Troubles: Com- ,"pepairing & Modifying Printed Circuits Software Timers for the 68000
« Beginner's Column: Getting Started municating with Telephone Tone Control, Z-Com vs Hacker Version of Z-System Lilliput Z-Node

1 ¢ Build an “”Epram” Part 1 » Exploring Single Linked Lists in C The ZCPR3 Corner

‘ issue Number 2: Issue Number 19: * Adding Serial Port to Ampro L.B. The CP/M Corner
« File Transfer Programs for GP/M + Using The Extensibility of Forth : f“;u‘fg‘::ggps'l r‘:‘t‘:‘:ﬁ;ﬂ:omman " Issue Number 31:

‘ * st232 Interface Plart Two * Extended CBIOS o Ampro 186 Networking with SuperDUQ | ¢ Using SCSI for Generalized 1/O

| ¢ Build Hardware Print Spooter: Part 1 * A $500 Superbrain Computer ZSIG Column * Communicating with Floppy Disks: Disk
¢ Review of Floppy Disk Formats * BASE: Part Seven arameters and tr?eir varlatlz:i .
« Sending Morse Code with an Apple It e Interfacing Tips & Troubles: Com- Issue Number 26: E XBIOS: A replacement BIOS for the
* Beginner's Column: Basic Concepts and municating with Telephone Tone Control, : P

* Bus Systems: Selecting a System Bus

Formulas Part2 i « Using the SB180 Real Time Clock
* Multitasking and Windows with CP/IM: A ¢ 14 §CS| Interface: Software for the

Review of MTBASIC SCS| Adapter

SB180.

s K-OS ONE and the SAGE: Demystifing
Operating Systems.

* Remote: Designing a remote system

Issue Number 3:
e Add an 8087 Math Chip to Your Dual

; lssue Number 20: ' = Inside AMPRO Computers program.
Processor Board i
« Build an A/D Converter for Apple Il < Desligning an 8035 SBC :intE:V-DOS. The CCP Commands Con i ;aJ:e ZCPR3 Corner: ARUNZ documen-
n.

* Using Apple Graphics from CP/M: Turbo
Pascal Controls Apple Graphics

¢ Soldering and Other Strange Tales

« Build a S-100 Fioppy Disk Controller:
wD2797 Controtler for CP/M 68K

¢ Modems for Micros
e The CP/M Operating System
* Build Hardware Print Spooter: Part 2

* 781G Corner

« Affordable C Compilers
e Concurrent Multitasking: A Review of e Language Development: Automatic
DoubieDOS generation of parsers for interactive
systems.

Issue Number 32:

Issue Number 4:

¢ Optronics, Part 1: Detecting,
Generating, and Using Light in Electronics
s Muhti-User: An Introduction

+ Making the CP/M User Function More
Useful

* Build Hardware Print Spooier: Part 3

* Beginner's Column: Power Supply
Design

Issue Number 6:

* Build High Resolution $-100 Graphics Issue Number 22: Package o K-OS ONE and the SAGE: Part 2, System
Board: Part 1 « NEW-DOS: Write Your Own Operating ° The Hitachi HD64180: New Life for 8-bit layout and hardware configuration.
» System Integration, Part 1: Selecting System Systems * The ZCPR3 Corner: NZCOM and ZC-
System Components « Varlabiity in the BDS G Standard Library ~ ° ﬁi‘l‘? Corner: Command Line Generators . PR34.

and Aliases

* Optronics, Part 3: Fiber Optics

* Controlling DC Motors

¢ Multi-User: Local Area Networks
¢ DC Motor Applications

Issue Numbaer 16:

* Debugging 8087 Code
¢ Using the Apple Game Port
e BASE: Part Four
*
L]

Using the S-100 Bus and the 68008 CPU
Interfacing Tips & Troubles: Build a
" Jellybean” Logic-to-RS232 Converter

issue Number 21:

« Extending Turbo Pascai: Customize with
Procedures and Functions

* Unsoldering: The Arcane Art

e Apalog Data Acquisltldn and Control:

Connecting Your Computer to the Real *

World
* Programming the 8035 SBC

*» The SCSI
Column

e Using Turbo Pascal ISAM Files

¢ The AMPRO Littie Board Column

Issue Number 23:

Interface: Introductory

e C Column: Flow Control & Program
Structure

e The Z Column: Getting Started with
Directories & User Areas

* The SCSI Interface: Introduction to SCSI
* NEW-DOS: The Console Command
Processor

« Editing The CP/M Operating System

e INDEXER: Turbo Pascal Program to
Create Index

¢ The AMPRO Little Board Column

Issue Number 27:

¢ 68000 TinyGiant: Hawthorne's Low Cost
16-bit SBC and Operating System

* The Art of Source Code Generation:
Disassembling Z-80 Software

* Feedback Control System Analysis:
Using Root Locus Analysis and Feedback
Loop Compensation

e« The G Column: A Graphics Primitive

o A Tutor Program for Forth: Writing a For-
th Tutor in Forth B

« Disk Parameters: Modifying The CP/M
Disk Parameter Block for Foreign Disk
Formats

Issue Number 28:

» Designing Operating Systems: A ROM
based O.S. for the Z81.

+ Advanced CP/M: Boosting Performance.
e Systematic Elimination of
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.

* WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCIl terminal
based systems.

Issue Number 33:

* Starting your Own BBS
e Buiid an A/D Converter for the Ampro
L.B.e HDB84180: Setting the wait states &
RAM retresh, using PRT & DMA

_ » Using SCSI for Real Time Control

"« Open Letter to STD-Bus Manufacturers
* Patching Turbo Pascal
* Choosing a Language for Machine Con-
trot

« Data File Conversion: Writing a filter to
convert foreign file formats.

« Advanced CP/M: ZCPR3PLUS, and how
to write self relocating 280 code.

* DataBase: The first in a series on data
bases and information processing.

* SCSI for the S-100 Bus: Another example
of SCSI's versatility.

* A Mouse on any Hardware: Implemen-
ting the mouse on a Z80 system.
* Systematic Elimination of
Files: Part 2—Subdirectories and extnded
DOS services.

e ZCPR3 Corner: ARUNZ, Shells, and pat-
ching WordStar 4.0

Issue Number 34:

« Developing a File Encryption System:
Scramble data with your customized en-
cryption/password system.

« DataBase: A continuation of the
database primer series.

¢« A Simple Multitasking
Designing an embedded
multitasking system.

e ZCPR3: Relocatable code, PRL files,
2CPR34, and Type 4 programs.

e New Microcontroliers Have Smarts:
Chips with BASIC or Forth in ROM are easy
to program.

* Advanced CP/M: Operating system ex-
tensions to BDOS and BIOS, RSXs for
CPIM 2.2

» Macintosh Data File Conversion in Tur-
bo Pascal.

Executive:
controller

Issue Number 35:

o All This & Modula-2: A Pascal-like alter-
native with scope and parameter passing.

s A Short Course in Source Code
Generation: Disassembling 8086 software
to produce modifiable assem. souce code.
* Real Computing: The National
Semiconductor NS32032 is an attractive
alternative to the Intel and Motorola CPUs.
+ S-100 Eprom Burner: a project for 5-100
hardware hackers.

o Advanced CP/M: An up-to-date DOS,
plus details on fite structure and formats.

» REL-Style Assembly Language for CP/M
and Z-System: Part 1-selecting your
assembler, linker, and debugger.

e ZCPR3 Corner: How shelis work,
cracking code, and remaking WordStar 4.0.

issue Number 36:

Issue Number 38:

¢ Information Engineering: Introduction
¢ Modula-2: A list of reference books

« Temperature Measurement & Control:

Agricultural computer application

e ZCPR3 Corner: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILE]
* Real Computing: NS32032 hardware for
experimenter, CPU's in series, software
options

¢ SPRINT: A review

+ ZCPR3's Named Shell Variables

* REL-Style Assembly Language for CP/M
& Z-Systems, part 2

* Advanced CPIM:
programming

Environmental

Issue Number 37:

* C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers

e ZCPR3 Corner: Z-Nodes, patching for
NZCOM, ZFILER

¢ Information Engineering: Basic Concep-
ts; fields, field definition, client
worksheets

* Shells: Using ZCPR3 named shell
variables to store date variables

* Resident Programs: A detailed look at
TSRs & how they can lead to chaos

* Advanced CP/M: Raw and cooked con-
sole I/0

e Real Computing: NS320XX floating
point, memory management, coprocessor
boards, & the free operating system

* ZSDOS-Anatomy of an Operating
System: Part 1

e C Math: Handling Dollars and Cents
With C.

e Advanced CP/M: Batch Processing
and a New ZEX.

e C Pointers, Arrays 8 Structures Made
Easier: Part 2, Arrays.

e The Z-System Corner: Shells and ZEX,
new Z-Node Central, system security un-
der Z-Systems.

e Information Engineering: The portable
Information Age.

e Computer Aided Publishing: Introduc-
tion to publishing and Desk Top Publish-
ing.

@ Shells: ZEX and hard disk backups.

e Reai Computing: The National Semi-
conductor NS320XX.

o ZSDOS--Anatomy of an Operating Sys-
tem, Part 2.

Issue Number 39:

e Programming for Performance: Assem-
bly Language techniques.

e Computer Aided Publishing: The Hewl-
ett Packard LaserJet.

e The Z-System Corner: System en-
hancements with NZCOM.

e Generating LaserJet Fonts: A review of
Digi-Fonts.

e Advanced CP/M: Making old programs
Z-System aware.

e C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

o Shells: Using ARUNZ alias with ZCAL.
e Real Computing: The National Semi-
conductor NS320XX.

o The Computer Corner.

Issue Number 40:

e Programming the LaserJet. Using the
escape codes.

e Beginning Forth Column: Introduction.
e Advanced Forth Column: Variant Rec-
ords and Modules.

e LINKPRL: Generating the bit maps for
PRL files from a REL file.

o WordTech's dBXL: Writing your own
custom designed business program.

o Advanced CP/M: ZEX 5.0—The ma-
chine and the language.

& Programming for Performance: Assem-
bly language techniques.

e Programming Input/Output With C:
Keyboard and screen functions.

e The Z-System Corner: Remote access
systems and BDS C.

e Real Computing: The NS320XX

¢ The Computer Corner.

Issue Number 41:

e Forth Column: ADTs, Object Oriented
Concepts.

e Improving the Ampro LB: Overcoming
the 88Mb hard drive fimit.

e How to add Data Structures in Forth

o Advanced CP/M: CP/M is hacker's ha-
ven, and Z-System Command Scheduler.
e The Z-System Corner: Extended Mui-
tiple Command Line, and aliases.

® Programming disk and printer func-
tions with C.

e LINKPRL: Making RSXes easy.

¢ SCOPY: Copying a series of unrelated
files.

o The Computer Corner.

issue Number 42:

¢ Dynamic Memory Allocation: Allocat-
ing memory at runtime with examples in
Forth.

e Using BYE with NZCOM.

e C and the MS-DOS Screen Character
Aftributes.

e Forth Column: Lists and object ori-
ented Forth,

. e The Z-System Cormer: Genie, BDS Z

and Z-System Fundamentals.

& 68705 Embedded Controller Applica-
tion: An example of a single-chip micro-
controller application.

» Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

eReal Computing: The NS 32000

e The Computer Corner

TCJ ORDER FORM

#s

Subscriptions U.S. Canada Surface Total
Foreign
6 issues per year
0O New O Renewal lyear $16.00 $22.00 $24.00
2years $28.00 $42.00
Back Issues ———m— ———————— ————— $350€a. $3.50ea. $4.75ea.
Six or more - ————1H—7m——————————— $3.00 ea. $3.00 ea $4.25 ea.

Expiration date

Name

All funds must be in U.S. dollars on a U.S. bank.
0 Check enclosed O VISA O MasterCard Card#

Total Enclosed

Signature

Address

City

State

Z1

#43

THE COMPUTER JOURNAL

190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406} 257-9119

Editor
(Continued from page 3)

Postscript which are indispensable for
anyone working in that area. Other impor-
tant titles are “Writing MD-DOS Device
Drivers” by Lai, “Graphics Programming
in Turbo C 2.0” by Ezzel, and “Program-
ming in Clipper” (second edition) by
Straley. I don’t know if their titles are
available by direct order, but get their
catalog and check with them.

What other titles do you find useful?
« Who publishes them, are they still in print,
. and where can you get them? Send us the
information, and we’ll put it together into
an article or a column.

EPROMSs and Other Things

Broschat’s article is very timely, be-
cause I am also delving into ROMs
(mostly EPROMs) on various CPU,
printer, and drive controller boards: I've
long wanted to download the EPROM
contents to disk where I could disassemble
and revise them. Now I finally got a
Periphco EPROM programmer running,
but I still need an EPROM eraser.

EPROMs are the most frequently used
non-volatile memory for developing em-
bedded controllers, but the commonly
available parts have been relatively slow
(350 or 450 nanoseconds). This limits the
system clock frequency to 2.0 or 2.5 MHz
unless you insert wait states. CMOS parts,
" such as the 27C128-15 (16,384x8) with a
speed of 150 nanoseconds (6 MHz) are
available from Jameco or JDR for about
$7, but they require a 12.5V programming
pulse instead of the 25V pulse used with
the older parts such as the 2732. My
EPROM programmer only offers a choice
between 21 and 25 volts, so it would have
to be modified in order to support both
12.5 and 25 volt parts. The EPROM also
have the disadvantage of requiring an in-
tense short wave ultraviolet light for eras-
ing. A decent EPROM eraser costs about
$70.

Two alternatives to EPROMs are
EEPROMs (Electrically Erasable Pro-
grammable Read Only Memory) and bat-
tery backed nonvolatile SRAM. The older
EEPROMs required special voltages for
programming and erasing, but newer de-
vices need only 5 volts. The speed on
EEPROMs has been running 250 to 350
nanoseconds, but faster devices are be-
coming available.

We carried an article in issue #1 on
building an EPRAM (Erasable Program-
mable Random Access Memory) which
described how to add battery back-up to
CMOS SRAM which is now available with
speeds of 100 nanoseconds and less. This
is still a very viable idea for system devel-
opment, but is too bulky for use in produc-
tion units. Dallas Semiconductor (4350
Beltwood Parkway South, Dallas Texas
75244-3219) produces a nonvolatile
SRAM with a built in battery which is very
attractive for both development and pro-
duction. Prototype samples are available
from a special department for credit card
orders (1-800-336-6933). I wish that other
vendors made it so easy to order small
quantities. Their DS1220 (2Kx8) is a rea-
sonable $10.80. The DS1235 (32Kx8) is
$51.57 which is a little steep. I don’t have
the specs on speed yet, but I have ordered
a DS1220 for evaluation and I'll let you
know how it works out.

The answer may be to use standard
EPROM where the speed is acceptable
and the changes are not fast and furious.
Switch to faster 12.5 volt CMOS
EPROMs where you need the speed
(Texas Instruments has speeds down to 35
nanoseconds). Use battery backed CMOS
RAM where you need both the speed and
ease of changing the data.

I'll be building several EPRAMs for my
own work, and I'll report more on them
later. Issue #1 is still available for $3.50,
and when they run out we’ll supply a copy
of the article for $1.50 (add $1.25 for for-
eign orders).

Incidentally, when I talk about part
availability, I mean parts that I can order
in one or two quantity today from Jameco,
JDR, Digi-Key, Dallas, etc.—not what is
only mentioned under new developments
or available only in large quantity EOM di-
rect orders.

Z-Fest 2 and Pieces of Eight

The Connecticut CP/M User’s Group
is in the process of scheduling the second
Z-Fest, with a tentative date of May 19 at
Trinity College. The date and place are
not firm yet, but I need to call this to your
attention in this issue because #44 will
probably be too late (darn two month
scheduling).

Check with Pieces of Eight c/o Lee Bra-
dley, 24 East Cedar Street, Newington, CT
06111. I believe that up to date informa-
tion will also be on the Eastern Z-Nodes.

They are to be commended in continu-
ing to support those of us still interested in
CP/M. Check with Lee about joining the
group and receiving their newsletter. @

Computer Corner
(Continued from page 39)

sonal programming language. That means
you may earn your living doing C or For-
tran, but when working on those fun or
quick ten minute projects, out comes
Forth and it is done. It means picking a
package you like and adding your own per-
sonal features to help you program in your
own style and process. So I now call Forth
my personal language.

Till Later
Well I need to get this out of here, so
let me say I will talk more about using
Forth in dedicated systems and especially
about the newest version of F-PC. Till
then keep hacking . .. ®

Prototype PC Board Companies:

ARIEL Electronics
1285 Forgewood Ave.
Sunnyvale, CA 94089

HiTech Equipment Company
9400 Activity Road
San Diego, CA 92126
(619)566-1892

Instant Board Circuits Corp.
20 Pamaron Way, Suite A
Novato, Ca 94949

The Computer Journal / #43

Computer Comer
(Continued from page 40)

(programmers, languages) available to
support the project.

When I checked out controllers for my
last project a major concern was cost. Qur
project was for 20 units (plus a few extras)
and so use of EPROM based controllers

.was a simple decision. 1 looked at both

embedded EPROMS (part of the MCU)
and using MPU’s with EPROMs. Intel’s
EPROM based controllers were two to
three times the cost of Motorola’s. The
price of MPUs and factory burned ROM
based MCUs was about the same (both
Intel and Motorola). To use the much
theaper factory burned MCU’s requires
runs of 5,000 or more. Our 20 units didn’t
approach that number by a long sight.

My cost search indicated that Motor-
ola’s 68705 series of MCUs was the cheap-
est and best choice. The next cost concern
was board construction and number of
features to be supported. In our case 24
I/O lines were needed and three 30¢ chips
were used to multiplex one of the 8 bit 1/O

_buses (unit has 4 I/O buses). The version

R3 of the 68705 has a built in A/D con-
verter (also saving cost of a separate chip).
As you can see a number of features of
the device matched our needs perfectly.
Our main controller board ended up with
4 chips, 1 opamp, 8 power transistors, and
2 regulators.

This project was ideally suited for us to
design and build our own controller board.
Our system was limited and so when a
couple of different projects came up with
larger needs we looked at other ways of
solving the problems. These projects had a
high software overhead (program would
take up more than 4K) and lots of user
interfacing. In one case a Z80 based board
was constructed, the other is under consid-
eration but use of PC clone boards is high
on the possible list.

In the Z80 case the number of I/O de-
vices was limited and easily handled. The
amount of computing however required
an interrupt driven system with 32K of
ROM and 8K of battery backed-up RAM.
Total chip count was 16 and no chip cost
more than $2.00. In this case construction
cost would be under that of PC clones and
less than any off the shelf controller units.
The newest design under consideration
however needs more.

This proposed design contains multiple
communications links, complex user inter-
faces, several different types of I/O inter-
faces, and three different software pack-
ages. The client is developing a intercon-
nected controller system using master,
slaves, and sub-slave units. If separate
boards were used for each unit the cost
would get out of control. What is needed
here is one controller which can be

The Computer Journai / #43

adapted for each possible use.

In the past we would have chosen STD
bus products. A single type of CPU board
would have been interfaced with I/O cards
suited for the needed load demands. Ex-
cept for the I/O cards all the rest of the
hardware would be the same. This same-
ness allows for easy repair, stocking of
parts, and cost reductions. The cost per
system however would be $200 to $400
each. The cost of PC clone units are cur-
rently running under $80. This lower cost
has caused many people, including our-
selves to consider these over STD bus. If
we have to build our own interface boards
for the PC clones and add that cost, as well
as the power supply cost, it still is under
$200 each system.

If we only consider cost it becomes
hard not to consider PC clones. When you
add all the software tools available for
clones and especially if the project is com-
plex, the decision is usually toward clones.
Since we haven’t actually done this job yet,
I can’t say what the long term cost will be.
Our 68705 system cost was a little higher
than planned (about $65 each) when you
figure in all the cost associated with two
plotting runs on the PCB fabrication
(learning Orcad problems). That is why 1
would like to end this discussion by asking
our readers to drop us letters if they have
developed systems using clones over build-
ing their own. What we are interested in is
actual why, what, and how much the final
cost was. We are also interested in
whether or not you found the overall proj-
ect easier or harder. Did you do this under
DOS or wrote (bought) your own RTOS
(real time operating system).

Moving On

Well this has taken up more space than
I planned so my last comments will be
brief. I have been looking at other full
time work since contracting has siowed
down lately (actually stopped). I got inter-
viewed by one company and found the job
offer hard to refuse. So as you can guess I
am now working for a large company that
makes entire systems for handling newspa-
per publishing. The place made 68000
based terminals and I have been hired to
maintain the software.

So far I have found this part of their
software activities to be every software
company's nightmare. There is no docu-
mentation on how all the different versions
of software are put together (32 versions).
No documents as to what parts fit where
(158 files in one version alone, about 4MB
of source code). Nothing to help me find
out where to start. However I have started
plugging away at little pieces and think in
about 6 weeks I should have enough infor-
mation to start programming on the sys-
tems. Actually 6 weeks is pretty good when
you figure it took them over 10 years to
create the problem.

I can say they have learned over the
years and are now using automatic library
utilities in other programming areas. As I
get more experience on their software
practices and hardware design I will be
passing it on to you. For now I can only
comment on how, many years ago they
could have gone to a Forth based system.
When I worked at a Forth software house,
1 found out about a Forth network system.

This network system enabled program-
mers to work on mainframes (just what we
do) and then download their code to the
final system where it is compiled and run.
The big advantage is being able to connect
to the remote system as a user on the
Forth running there. There are no cross
compilers here, just Forth running on sev-
eral different computer types. These pro-
grams would work perfectly for this com-
pany because the terminals download their
operating code whenever they power up.
However, all changes are now done on a
separate development system (which is
dying) and finished code (32 versions of it)
is stored on the mainframe.

What Forth would have given them is
the ability to use each work station as a
development system. The Forth network
also allows use of the kernel for debug-
ging. This is far better than trying to use a
debugger with limited commands to see
what is actually happening. Debuggers
only allow patches in the hex code, where
as the Forth patches would be the finished
product (you can upload the changes onto
the mainframe). Forth’s virtual system
also would have limited the number of dif-
ferent modules needed. But the product
has long passed the stage where improve-
ments are possible, so it now my job to
maintain the over 300 files of spaghetti
code.

New F-PC 3.5

I got to go to the FORTH DAY, put
on by the FORTH INTEREST GROUP
in Sunnyvale this year. Instead of a big af-
fair like last year they decided to have a
small local fun day. We got to hear Tom
Zimmer (and others) talk about Forth.
Tom wrote F-PC (with help) and so talked
about how it is still growing and some of
the newest features. I have since been
working on a graphics program for VGA
using the FPC structure. I am still wring-
ing out my problems, so will talk about this
next time. Charles Moore has a new chip
he is working on, and it scemed rather
strange but then Forth still seems strange
to many people.

On the way down with some friends, we
got talking about Forth (what else). We all
sort of came to the same point (in differ-
ent ways of course), that Forth is a per-

(Continued on page 38)

39

The Computer Corner

By Bill Kibler

Changes and more changes. Lots of
things to report on and about. There’s

WESCON, FORTH, 68000, and more.

WESCON

I went to WESCON in San Francisco,
partly to just see the city after the quake
and partly to see the latest in electronics.
The views of the quake damage were al-
most invisible as we rode the bus to and
from the show. The major problem was
the hour long traffic jam getting out of the
city that night. It will be a long time before
traffic into and out of the city becomes
reasonable again.

WESCON is the west coast electronic
and component show, alternately held in
San Francisco and Los Angeles. I go every
other year (when it is in S.F.) and this
year’s show was little different from two
years ago. I thought the number of people
visiting was down and not as frantic as last
time. A few years back it scemed every-
one was hot after some new important
product. This year was a how to do it for
less approach.

I went with a friend and we both got

. interested in how to build prototypes in

our own shops. He works for a small
manufacturing concern and they do small
runs of PC boards. They send them out
for the major work (PCB layout and fabri-
cating). The cost for doing small quantities
can be rather high. Our interests were di-
rected at cheaper means of getting those
10 or 20 boards, as well as those first
prototypes. I had heard about some prod-

- ucts that would be discussed at a presenta-

tion called “$60 dollar PCB prototypes”
and had planned on catching it.

I goofed and came on the wrong day,
but hunted the vendors down anyway.
That actually was a big feat — finding them
that is, as the show had what seemed like
thousands of booths and two locations.
We did find them and spent about a hour
talking with HiTech Equipment Corp. I
liked their ideas (used a 1 gallon etch
bath) but found them not much better
than many others. The major problem is
plating through the holes. Let me elabo-
rate on how these systems work.

There are a number of vendors all
doing about the same (a list is supplied at
end of article). You enter your design into
a computer using one of the PCB pro-

grams (each works with a number of ven-

40

dors output types—usually HPGL or
GERBER plot files) and the system lays
down the board. The one type we were
interested in used pens of resist and plot-
ted directly on the board. They used a very
small etching bath with no plating. Their
machine also did the drilling, then you had
to solder wires for the through holes. This
soldering each through hole problem is
where we dropped out of the idea.

In reading the papers presented, one
company has an idea they are working on
that may solve the problem. It uses boards
that have the component holes already
drilled and plated. They didn’t go into
many details but I feel it is similar to using
prototype boards that have plated holes on
.100 inch spacing. They (Ariel Electronics)
use a conductive polymer that is extruded
onto the board to form the traces between
these plated holes. Baking the board sets
the trace permanently. Sounds interesting
but I need to see their board layout first.

As a small shop we want the real thing
without all the work. That means through
holes and component holes that are plated
like the real ones. So far the only thing
close to that (other than Ariel’s design) is
using rivets. If your design had hundreds
of holes, putting rivets in would be a big
chore. [am already looking forward to two
years from now when this problem will be
solved.

We hunted down Orcad’s booth and
gave them a bad time over not being able
to edit part numbers on the PCB. I guess 1
wasn’t the first one with that complaint as
the designer had a “oh not another one”
fook. He stated they did that on purpose.
They want to force you to make correc-
tions in the schematic and netlist. My posi-
tion is that is fine except when you have a
quick change or simple board to layout.
You see 1 did a special board last time that
had only 6 components and was shown as
a part of the main power layout. We had
originally intended to do it in other ways
but at the last minute I laid out the board
in two hours and was done with it.

To do it however required me to use a
debugger on the actual file Orcad created
for the board. If you look in the file you
can find all the ASCII text. It usually takes
two sessions as any new components have
a # sign where the values go. So the first

time you put numbers in place of the #
signs. Running Orcad again lets you see
where the numbers are and from that you
create a table of those numbers and the
actual component number you want them
to have. Use debug again and change the
numbers to the desired component values
and you are done. In some ways I feel I
can do it faster than their own means of
editing text on the board.

Embedded Systems

There were plenty of companies pro-
viding support for embedded systems. My
friend was quite amazed at all the analyz-
ers, debuggers, and emulators. The
PROM burners were probably the only
other group with as many booths support-
ing embedded systems. I found one group
doing lots of 64180/Z180 work and hope-
fully talked them into doing some articles
for us.

This whole area of embedded or small
CPU systems has been very confusing for
our readers. It seems there are two areas
of concerns. The first is what do the terms
mean. The other problem is which direc-
tion to go in choosing a design solution.

The terms get confusing because Mo-
torola likes to use MPU and MCU to de-
scribe their small controllers. The terms
mean microcontroller unit (MCU) and
microprocessor unit (MPU). CPU has al-
ways been central processing unit and I
guess Motorola felt the term too mislead-
ing. MCUs have only I/O (input and out-
put) pins and no hand shaking for talking
to outside memory. MPU’s however have
the hand shaking lines to allow use of ex-
ternal memory. MPU’s aiso will talk to
other devices that talk to I/0. MCU’s can
handle the current needs of I/O, MPU’s
can’t.

With that simple explanation we can
start to see answers for the other concerns.
When I (or you) lay out the design prob-
lem there are several concerns we need to
consider. Cost is most atways on the top of
the list. Number of input and output lines
(and their current needs) is usually next on
my list. Overall size of the unit would be
next, followed by a long list of features that
need to be supported. Lastly I ook at toois

(Continued on page 39)

The Computer Journal / #43

